3719 Mante

Il Ave.

Cincinnati, Ohio 45236
(513) 8914496

.’Iﬂ

TABLE OF CONTENTS

GETTING STARTED

Introducing the Snapp BASIC Family
Installation Procedures
Introducing the Trial Package
Memory Requirements

Notation

SNAPP TWO - EXTENDED BASIC

General information
Single Step Trace
The sample program
XBASIC

XREF

XDUMP

XRENUM

XFIND

XCOMPRESS

SNAPP THREE - EXTENDED BUILTIN FUNCTIONS

General information
FN PEKW
SYSTEM POKE
FN ETIMS

FN FILES
SYSTEM ''SORT"
SYSTEM CLEAR
SYSTEM "ERASE"
FN ID$

FN PEKS

FN UC$

FN LC$

FN MAX

FN MIN

FN FMT$
SYSTEM DELETE
SYSTEM '"SWAP"
FN ROW

FN PW

FN HEX$

FN PK$

FN UPK

FN PDAT

FN UDATS$

SNAPP BASIC
Page 5a - 1
April 29, 1982

Voo NP W

19
10
11
12

15
17
2
22

25
26
26
27
28
28
34
31
31
32
32
33
33
34
34
35
36
36
37
37
38
39
49
41

SNAPP FOUR - EXTENDED BASIC MAPPING SUPPORT

General information

Screens, fields, and attributes
The off-line component

The on-line component

System restrictions

Technical information

Operator's guide

SNAPP FIVE - EXTENDED FILE MAPPING SUPPORT

General information

What's wrong with the way it is now
What we are going to do about it
Sample program the old way

Sample program the new way

Command syntax

SNAPP SIX - THE COLLEGE EDUCATED GARBAGE COLLECTOR

General information
Operation

Command format
Limitations

Hints & tips

SNAPP SEVEN -~ REVERSE COMPRESSION

General information
Operation

SOME REAL-WORLD SAMPLES
Print sorted mailing list
Convert mailing list to upper/lower case

A TUTORIAL ON GARBAGE COLLECTION
. « « But the Garbage Collector will ring several times!

SNAPP BASIC
Page 5a - 2
April 24, 1982

42
42
43
45

50

52
52
53
53
55
56

58
59
59
690
61

62
62

63
64

65

Introducing the Snapp BASIC Family

Snapp BASIC 1is an expanding family of enhancements to Microsoft BASIC de-
signed to accelerate the application development process by providing the pro-
grammer with a twentieth century toolbox. In the early days of computing,
machines were tremendously expensive, so economic necessity dictated that the
needs of the programmers were subservient to the use of the machinery. As a
result, programmers would spend many hours 'desk-checking' programs before ev-
er trying them out, and wade through mounds of memory dumps looking for the
elusive bugs. Hands-on debugging was just too costly, as were interpretive
languages. As machinery has grown in power and plummeted in cost, while peo-
ple power has remained relatively constant and the cost of good people has
risen, the ratio of costs in a computer system has turned totally upside
down.

The use of CRT displays and interpretive languages is a laudable first step
towards solving this new problem. By unhooking the programmer from his cod-

ing sheets and flowcharting templates, and hooking him directly to the target
machine, programmer productivity has risen markedly.

We at SNAPP WARE feel that this is just a start toward the solution to the ap-
plication development process. While we doubt that there will ever be "THE
FINAL PROGRAM", which would write programs while chatting with the end user,
there are many ways in which we can increase the programmer's productivity.

To allow our users to choose only those functions of the Snapp BASIC family

which are appropriate to their needs, we have separated the family into six
distinct products. Normally, if you order more than one, you will receive
them together on a single disk.

SNAPP BASIC
Page 5a - 3
April 2@, 1982

Installation Procedures

There are two distinct kinds of Snapp BASIC disks:
1) The DISTRIBUTION MASTER, which is included in this package.
2) Working copies or TARGET disks.

The distribution master is used only to create working copies of Snapp BASIC
and should thereafter be retired to a safe storage location. This procedure

is analogous to use of your original LDOS master disks, which also should on-
ly be used to make working copies. Working copies of Snapp BASIC can only be
created via the installation process described below. While you may certain-
ly make backups of Snapp BASIC disks, the SNAPP software will not function on
the backup unless/until the standard installation procedure is completed for
the new disk. We have made every effort to preserve the user's interests by
allowing creation of an unlimited number of working copies and by establish-
ing a very liberal replacement/upgrade policy for the distribution masters.

This version of Snapp BASIC requires LBASIC 5.1.2. As a convenience to those
users who have not yet upgraded to 5.1.2, Logical Systems Incorporated has
kindly allowed us to include LBASIC 5.1.2 on the distribution master. This
should not preclude updating to 5.1.2, as this upgrade provides many ad-
ditional enhancements to other portions of LDOS plus complete documentation
of these enhancements. We strongly suggest that every user upgrade to LDOS
5.1.2 immediately.

A brief description of the files contained on the SNAPP distribution master:

SNAPPINC The Snapp BASIC extensions.

LBASIC/CMD LBASIC 5.1.2 with the Snapp BASIC enabling patches
already installed.

LBASIC/0V3 A required LBASIC overlay.

LSNAPPnn/FIX These files contain optional patches which may be

applied at the user's discretion. Descriptions and
instructions are contained in each file and may be
viewed using the LIST library command.

ASTERON/FIX :

ASTEROFF/FIX Applicable only to users of SNAPP SIX, The College
Educated Garbage Collector. Descriptions and
instructions are contained in each file.

XBOFF1/FIX Patch to LBASIC to disable the Snapp BASIC
extensions.

XBPATCH1/FIX Patch to LBASIC to enable the Snapp BASIC
extensions.

GENERATE /BAS Applicable only to users of SNAPP FOUR, Extended

BASIC Mapping Support. See the documentation on
that product for details.

The Snapp BASIC extensions must be installed on an LDOS SYSTEM disk which
will be mounted on logical drive P during execution of LBASIC. This will nor-
mally be a 5" floppy disk, but a special version is available for those using
hard disk as their logical drive § disk. Refer to the section "HARD DISK
INSTALLATION" for instructions concerning this version.

SNAPP BASIC
Page 5a - 4
April 2@, 1982

The installation process will create a file named SNAPPINC on the target
disk. This file will consist of 72 records with a logical record length of
256. On a standard 5" double density disk, this translates to 12 granules or
four cylinders. Since the Snapp BASIC extensions use an overlay scheme to
minimize memory requirements, placement of the SNAPPINC file can have a di-
rect bearing on processing efficiency. The preferred placement would be as
close as possible to the directory cylinder. It is desirable, but not essen-
tial, for the SNAPPINC file to consist of a single extent and begin on a cyl-
inder boundary. It is mandatory that the SNAPPINC file contain no more than
four extents. With these factors in mind, you should examine a FREE space
map for the target disk and decide where to place the SNAPPINC file before
starting the actual installation process. Placement of the SNAPPINC file may
be accomplished in one of two ways:

1) If a file named SNAPPINC already exists on the target disk, that starting

location will be used.
2) If the SNAPPINC file does not exist, you will be prompted for a starting

cylinder number.
The installation sequence for new users is as follows:

1. Place the target LDOS system disk in physical and logical drive f. This
disk must contain the LBASIC/CMD file and the system overlays SYS2/SYS,
SYS3/8YS, SYS8/SYS, and SYS1#/SYS. These overlays may be SYSRESed rather
than being present on the disk so long as HIGH$ is greater than X'CP@9'.

2. Place the SNAPP distribution disk in drive 1.

a. If your target disk DOES NOT contain LBASIC 5.1.2, execute the
following two commands:
COPY LBASIC/CMD.RSALTHFF:1 :§ (CLONE)
COPY LBASIC/OV3.RSALTPFF:1 :§ (CLONE)

b. If your target disk DOES contain LBASIC 5.1.2, execute the
following command:
PATCH LBASIC.RSHLTHFF XBPATCH1

3. Upon receiving LDOS. Ready, place the distribution master in drive P and

press the RESET button. In a few seconds, the EXTEND BASIC COPY utility will
prompt you to place your target disk in drive f.

4. 1If the SNAPPINC file does not exist on your target disk, you will be
asked to enter the "Starting Cylinder" for this file. Enter the value previ-
ously determined from your examination of the target disk FREE space map.

5. .The message '"Copy Complete' indicates successful conclusion of the instal-
lation process. You will then be prompted to place a system disk in drive §
and press ENTER. Following a boot sequence to re-establish LDOS control,
your Snapp BASIC product is ready to use.

All Snapp BASIC products included in a single order will normally be placed
on one distribution master. If, however, you were to purchase different
Snapp BASIC products at different times, you would receive a separate
di§tribution master for each order. To simplify the installation process in
this situation, we have implemented a "distribution merge" facility which
allows you to combine the Snapp BASIC products onto a single distribution

SNAPP BASIC
Page 5a - 5
April 2§, 1982

master. In the following MERGE instructions, we will refer to the most
recently acquired distribution master as the NEW disk, and the older one as
the OLD disk:

1. Place a standard 5" double density LDOS system disk in physical and log-
ical drive P and obtain the LDOS Ready prompt.

2. Place the NEW disk in drive § and press the RESET button.

3. When the EXTENDED BASIC COPY utility program prompts you for the target
disk, place the OLD disk in drive f and press ENTER.

4. In a few seconds, the copy utility will prompt you for the distribution
disk. Re-mount the NEW disk in drive § and press ENTER.

5. The message 'Merge Complete'" indicates successful conclusion of the merge
process. You will then be prompted to place a system disk in drive P and
press ENTER. Following the boot sequence to re-establish LDOS control, you
may proceed to the normal "installation sequence for new users."

When you have completed this merge process, the OLD disk is no longer a dis-
tribution master. You may discard it or use it for another purpose. The NEW
disk is now the DISTRIBUTION MASTER for all Snapp BASIC products that you
have purchased.

HARD DISK INSTALLATION:

The special hard disk version can ONLY be installed on hard disk. The target
must be an LDOS system disk, normally used as logical drive #, and must con-
tain the LBASIC/CMD and system overlay files specified in item 1 of the nor-
mal installation sequence.

1. Perform one of the actions specified in item 2 of the normal installation
sequence to place a patched copy of LBASIC 5.1.2 on the target hard disk.

2. Arrange the logical drive configurations such that physical and logical
drive f contains a 5" double density LDOS system disk. Logical drive 1
should reference the target hard disk. Execute the DEVICE library command to
verify these assignments.

3. Proceed to item 3 in the normal installation sequence. You will NOT be
prompted for the target disk as it is assumed to be at logical drive 1. 1In
item 5 of the normal installation sequence, at the prompt for a system disk
in drive §, insert your standard LDOS 5" disk which automatically switches
logical drive P to the hard disk.

SNAPP BASIC
Page 5a - 6
April 2@, 1982

INSTALLATION OF A SUBSET OF SNAPP PRODUCTS:

A facility is provided which will permit you to install some, but not all of
the Snapp BASIC products which are included on your distribution master.
This facility is engaged by pressing the CLEAR key in response to the prompt

'Place TARGET diskette in drive §, then press ENTER" in step 3 of the normal
installation process. Then a series of prompts will appear, for those mod-

ules contained on the distribution diskette:)
Disable SNAPP II?
Disable SNAPP III?
and so forth. To these prompts, a response of the CLEAR key will disable the
specified module, while a response of the ENTER key will leave the module en-
abled.

Introducing the Trial Package

Good software is not cheap. While our products carry a high price tag, our
customers agree that the value contained therein greatly exceeds the cost.

Since most microcomputer software is sold by mail order, a problem is created
by (appropriately) high priced items. The prospect of purchasing a $19.95
game sight unseen would not faze most users, but spending several hundred dol-
lars certainly will.

Our answer to this dilemma is the trial package. The purchaser of this pack-
age receives, for a very low investment, the opportunity to fully evaluate
our most popular products in his own environment.

The distribution master included with the trial package may be used to apply

these program products to ONLY ONE LDOS diskette. Additionally, the single
working copy created therefrom will last for only a limited period of time.

SNAPP BASIC
Page 5a - 7
April 2@, 1982

Memory Requirements

Other versions of Snapp BASIC are able to provide the additional features
with NO decrease in memory available to the user. This is due to certain cod-
ing practices in Disk BASIC which left "holes" that Snapp BASIC can use for
its resident code.

The clean and efficient code of LBASIC, however, does not provide us with

this luxury. 1In this system, the Snapp BASIC resident control routines occu-
Py 574 bytes of user memory. This space is automatically reserved during
LBASIC initialization in the area immediately following LBASIC itself.

Once the resident control routines are in place, most of the functions of the
Snapp BASIC family are accomplished via overlay techniques, and will not re-
quire further dedication of memory. Two of the facilities, however, will re-
quire modest amounts of dedicated memory to achieve a reasonable performance
level. Details are in the descriptions of SNAPP FOUR and SNAPP SIX.

SNAPP BASIC
Page 5a - 8
April 24, 1982

Notation

Generally, the following conventions will be used in this document:

CAPITAL LETTERS
indicate material which must be entered exactly as shown.

lowercase letters
represent words or values you supply from the acceptable values for
particular command.

... (ellipsis)
indicates that the preceding items may be repeated.

[1 (square brackets)
indicate that the material contained therein is optional.

<key>

specifies that the indicated key or keys are to be pressed.

indicates a required blank.,

SNAPP BASIC
Page 5a - 9
April 2, 1982

SNRAPP TWO - EXTENDED BASIC
Program Development Aids

GENERAL INFORMATION:

SNAPP-II is a group of extensions to Model III LBASIC which extend the func-
tion and operational ease of this interpreter. The system is written entire-
ly in machine language for SUPER FAST execution of your commands! The system
consists of six modules, all of which are invoked directly from the keyboard.
The resident control routines for the entire Snapp BASIC family occupy 574
bytes of wmemory. This space 1is automatically reserved during LBASIC
initialization in the area immediately following the LBASIC program.

The six modules, and their major function:

XBASIC: General keyboard functioms.

XREF: Variable/line number cross reference.

XDUMP: Dynamic dump of the values of variables.

XFIND: A cross reference facility for strings and keywords.
XRENUM: A better renumbering facility.

XCOMPRESS: A facility to significantly reduce the memory requirements of a
program.

SINGLE STEP TRACE

An interesting feature of this product, not particularly related to the six
main modules, is a single step trace facility.

SYSTEM TRON [lireno] enables Single Step Trace. Just before each line is ex-
ecuted, the line number is displayed in the upper right corner of the screen
and execution is suspended until keyboard input is detected. Press ANY key
to continue. If the BREAK key is pressed, it will be handled normally, but
the line number in the Break message will be that of the LAST line executed,
while the Trace display will show the line number of the NEXT line which
would have been executed. When any key is held down, lines will be executed
at the normal keyboard repeat rate. The optional line number parameter will
cause the Trace operation to be initiated only when the NEXT line to be ex-
ecuted has a line number equal to that specified. The line numbers will be
displayed on the second line of the screen so as not to conflict with the
clock display.

SYSTEM TROFF disables Single Step Trace.

Each of the above commands may be entered either as program statements or as
immediate commands.

SNAPP BASIC
Page 5a - 1§
April 2§, 1982

THE SAMPLE PROGRAM:

We have set up the following program to demonstrate the functions performed
by the various processing modules in SNAPP-II. Don't try to 'understand'
this program, because it just doesn't do anything! The statements were cho-
sen simply to highlight the utility functions available. Please note that
the example 1includes a command from one of our other products, EXTENDED
BUILTIN FUNCTIONS, and that unless you have also purchased that product, this
(FN FILES) will not function separately. Furthermore, XREF and XCOMPRESS
handling of the FN FILES statement will depend on the presence or absence of
the EXTENDED BUILTIN FUNCTIONS program product.

10 AB = 4

2@ HN = &HFFFF

30 'THIS IS A REMARK

49 PRINT FN FILES

S@ B$ = "THIS IS A CHARACTER STRING"
6@ CD = 5099009

70 IF AB > CD THEN GOTO 159

8¢ DIM J(5)

9¢ FOR IZ =1 TO 5

169 J(IZ) = 1%~2

119 NEXT IZX

129 GOTO 150

139 A$ = "THIS IS A CHARACTER STRING" + ", TOO!"
149 YZ = 1989

15¢ PRINT "END"

SNAPP BASIC
Page 5a - 11
April 2¢, 1982

XBASIC:
GENERAL KEYBOARD FUNCTIONS

The functions performed by XBASIC itself are abbreviations for commonly used ‘
commands, of which twelve are implemented.

o>

AUTO
CLS
DELETE
EDIT
KILL
LIST
LOAD"

MERGE
NEW
LLIST
SYSTEM
SAVE

<uWZICOCORBOO

The above abbreviations, when they appear as the first character of a command

line, will function as if the full word had been keyed in. As with the full
command name, blanks following the abbreviation may be included or omitted.

Additionally, XBASIC supports an 'UN-NEW' function which will restore the res-

ident BASIC program following an unintentional NEW, an accidental CMD'"S", or

even a system RESET. This function is invoked using the letter 'U', and MUST

BE THE FIRST COMMAND ISSUED FOLLOWING WHATEVER DISASTER HAS OCCURRED. 1f

BASIC has been re-entered following a CMD"S" or a re-boot, the number of

files MUST be the same as it was before. Completion of the UN-NEW function

will be followed by an automatic LIST of the recovered material so that you “‘
may visually verify the results. Please note that certain types of failures,

such as defective memory, can cause total garbage to be produced.

SNAPP BASIC
Page 5a - 12
April 20, 1982

XREF:
THE CROSS REFERENCE FACILITY

The purpose of this routine is to produce a listing of any/all variables/line
numbers used within the resident BASIC program, with information about each

location within the program where the variable/line number is used. Most pro-
grammers find a cross reference facility to be indispensable, and consider

the cross reference printout to be a standard part of a program listing.

This facility is more comprehensive than the CMD"X" function provided with
LBASIC, in that it distinguishes between simple references and updates to a
variable. This can be very helpful when debugging in that if you are trying
to locate the cause of a corrupted variable, you may limit your search to
those lines which modify that variable. Additionally, this facility is sig-
nificantly faster than CMD"X". Most users will want to free up disk space by
killing LBASIC/0V2.

XREF 1is invoked using the abbreviation 'X', usually followed by parameters.
There are nine options (spacing between the 'X' and any parameters is op-
tional):

X . List all references to screen.

X, List all references to printer.

X v List references starting with vv to screen.

X .nonnn List references starting with nnnnn to screen.

X ,vv List references starting with vv to printer.

X ,nnnnn List references starting with nnnnn to printer.

X vwv List only references to vv to screen.

X nnann List only references to nnnnn to screen.

X List 'pext' program line containing a reference to the last 'X
vv' or 'X nannnn' command.

In the above formats, the symbol vv represents any variable name, and may be

either one or two characters. The symbol nnnnn represents any (line) number,
and may be from one to five characters.

FORMAT OF THE LISTINGS:

Each listed variable will show the variable name at the left margin, followed
by one or more reference entries. A reference entry is as follows:

<E>nnnnnd/ (O<%$! #><nn>

where the *, if present, means, for a number, that it is a line number rather
than an integer constant, and for a variable, that it is modified in the ref-
erenced line, nnnnn is the line number in which the reference(s) occur, sthe
/, if present is simply a separator, the (if present, indicates that this
was an array reference, the % or $ or ! or #, if present was the typing char-

acter found, and nn, if present is the number of references in this line (if
nn is not present, there was only one reference in this line).

The standard LBASIC Pause and Break key processing is utilized, therefore:
1) Press <SHIFT @ to temporarily suspend the listing.
2) Press any key except <SHIFT @ to resume a suspended listing.

SNAPP BASIC
Page 5a - 13
April 2@, 1982

3) Press the BREAK key at any time to terminate the listing and return to
the '"Ready" prompt.

4) The "LBASIC SINGLE STEPPING" feature may be used.
5) Pressing either <SHIFT @ or BREAK keys will remove all characters from
the typeahead buffer.

AN EXAMPLE:

If the command X , is given with our sample program resident, the following
printout will be produced:

1 94
2 1¢9
4 19
5 8¢ 9¢
159 *7¢9 *120
1989 149
"FILES 4§
&HFFFF 29
A *139/$
AB *19 79
B *58/$
CD *60 79
HN #2§
I *99/7%
J 89 (*199(
YZ *140

Note that the special 'SNAPP keywords' from our EXTENDED BUILTIN FUNCTIONS

product will be referenced following the number references. Individual refer-
ence listings of 'SNAPP keywords' may also be obtained by preceding the
keyword with a quote.

Hex and/or Octal constants will appear in the listing following listings of
'SNAPP keywords', if any.

SNAPP BASIC
Page 5a - 14
April 20, 1982

<

AN EXAMPLE:

If the command Z , is given with the sample program resident and RUN, the fol-
lowing printout will be produced: ’

A

AB ! 4

B $ “THIS IS A CHARACTER STRING"

CD ! 5E+P6

HN ! -1

I % 6

3 @9 (1 (24 (3)9 (4) 16 (5) 25
YZ

Note that variables which have never been initialized are shown without typ-
ing characters or values.

SNAPP BASIC
Page 5a - 16
April 20, 1982

XDUMP:
THE DYNAMIC VARIABLE PRINT FACILITY

The purpose of this routine is to allow the programmer to easily list to the
video or printer all variables used in the program, ALONG WITH THEIR CURRENT
VALUES. This routine can greatly simplify debugging.

XDUMP is invoked using the 'Z' command, usually followed by parameters. Six
parameter formats are supported:

. List all variables to video screen.
R List all variables to printer.
Vv List only the named variable to video screen.

.vv List beginning with the named variable to the video screen.
,vwv List beginning with the named variable to the printer.
With no parameters, same as Z .

NNNNNN

Non displayable characters contained within string variables will appear as a
period. Array variables will have each member listed separately. Arrays up
to 1§ dimensions are supported.

FORMAT OF LISTING:

Each variable will be listed starting on a new line, followed by the type
character (% = integer, $ = string, ! = single float, # = double float), fol-
lowed by its current value. Array members will be listed the way they are
stored in memory, column major order, with the left most subscript varying
most frequently.

The standard LBASIC Pause and Break key processing is utilized, therefore:

1) Press <{SHIFT @ to temporarily suspend the listing.

2) Press any key except <SHIFT @ to resume a suspended listing.

3) Press the BREAK key at any time to terminate the listing and return to
the "Ready" prompt.

4) The "LBASIC SINGLE STEPPING" feature may be used.

5) Pressing either <SHIFT @ or BREAK keys will remove all characters from
the typeahead buffer.

SNAPP BASIC
Page 5a - 15
April 2§, 1982

XRENUM:
THE ENHANCED RENUMBERING FACILITY

This is an expanded program line renumbering facility which provides signif-
icant advantages over the CMD"N" feature of LBASIC. Most users will want to
free up disk space by killing LBASIC/OV1. The specific enhancements provided
by XRENUM are:

1) Allows relocation of blocks of program code.

2) Provides the capability of duplicating blocks of code.

3) Modifies line number references in ERL statements which follow the AND or
OR operators.

4) Correctly modifies line number references in LIST and DELETE statements
which have the form .-nnnnn.

5) Modifies line number references in LLIST statements.

6) Correctly updates the current line number pointer to the resequenced
value.

7) Displays informational messages showing the number of program lines and
size of program text before and after updates.

8) The speed of the renumbering is much better than that of CMD'"N'", and the
improvement ratio seems to grow geometrically with the size of the program.
For very large programs, this function may run as much as 2f times as fast as
CMD"N".

XRENUM is invoked using the abbreviation 'R', usually followed by parameters.

There are four optional forms of invocation (note that spacing between the
'R' and any parameters is optional):

1) R U Scans the program text for undefined line numbers or other errors in
statements which reference line numbers. The program text is not changed.
Errors encountered are displayed in the following format:

nonan/U - Line number nnnnn is referenced but does not exist in the
program.

nnnnn/X - Line number nnnnn contains a statement which requires reference
to a line number, but that line number reference was not found.

nonnn/S - Line number nnnnn contains a statement which references a line

number but that referenced number is not a valid line number. (Not within
the range 1-65529)

2) R newline,increment,startline,endline Causes all program lines with a
line number >= '"startline" and <= "endline" to be assigned new line numbers
beginning with '"newline'" with subsequent line numbers generated by adding "in-
crement". Each parameter must be a number in the range 1-65529. The default
value for "startline" is P; the default value for "endline" is 65529; and the
default values for "newline" and "increment" are 1f. The range of newly gen-
erated line numbers must not encompass any old text lines that are not part
of the resequence range 'startline" - "endline" inclusive. So long as this
rule i§ observed, the newly generated line number range may be placed any-
where in the program. The renumbered block of text will be moved to the prop-
er location after references to the renumbered program lines have been

SNAPP BASIC
Page 5a - 17
April 2@, 1982

altered. If any error of the type outlined in option 1 is encountered before
the text is altered, this command reverts to option 1 and the program text is

not changed. Note that this form of the command can easily be used to per-
form a '"destructive copy" of a block of program text, that is to say the code

is moved to the new location and deleted from the old location.

3) R I newline,increment,startline,endline Duplicates the block of program
text with line numbers >= "startline" and <= "endline", assigning line num-
bers beginning with '"newline" and incremented by "increment'. This option
differs from option 2 in that the old block of program text is not renumbered
or moved and no changes are made to line number references. Note that this
form of the command is used to perform a "nondestructive copy" of a block of
program text, that is to say the code is moved to a new locatiom but also
left in the old locatiom.

4) R X newline,increment,startline,endline Exactly the same as option 2,
with the exception that undefined line errors will not prevent the completion
of the renumbering operation. This option is particularly useful when work-
ing on a program which references subroutines which have not yet been
written.

Please note that if 'startline' and 'endline' are identical in any of the
above formats, that the desired operation will be performed on the indicated
single line.

If you wish to suppress the appearance of the information messages which nor-
mally appear on the display during the renumbering process, you may insert
the letter 'M' after the 'R' and before any other options, if present.

Error conditions which may be encountered during R processing, and their
messages:

Syntax Error - An invalid parameter has been entered.

Can't process line § - A program containing line number P cannot be pro-
cessed by XRENUM.

Seq # overflow - The range of newly generated line numbers either encompass-
es .a line number in the original program or exceeds the maximum valid number
of 65529.

Program text error - The '"next line address'" contained within each program
line does not agree with the actual end of the program line. Might be caused
by bad memory.

FATAL ERROR - TEXT NOW BAD - An error has been encountered from which no re-
covery is possibie. An exit to LDOS is made to ensure that the erroneous
text is not used. Almost certainly caused by bad memory.

OQut of memory - There is insufficient free memory to process the request;
reducing the amount of string space will increase the available free memory.
No program - There is no program in the text buffer. ' ‘
Error lines: - Identifies the set of program text errors outlined in option
1-

SNAPP BASIC

Page 5a - 18

April 26, 1982

AN EXAMPLE:

If the command R I 122,2,99,11¢ is given with the sample program resident,
the following program will result:

184 AB = &

29 HN = &HFFFF

3¢ 'THIS IS A REMARK

4% PRINT FN FILES

5¢ BS = "THIS IS A CHARACTER STRING"
6@ CD = 5000000

70 IF AB > CD THEN GOTO 159

8¢ DIM J(5)

99 FOR I%2 =1T0 5

106 J(1%) = 1%"2

119 NEXT 1%

129 GOTO 159

122 FOR IZ =1 TO 5

124 J(I%) = 1%°2

126 NEXT I%

139 A$ = "THIS IS A CHARACTER STRING" + ", TOO!"
149 Yz = 198¢

15¢ PRINT "END"

SNAPP BASIC
Page 5a - 19
April 2@, 1982

XFIND:
THE STRING/KEYWORD CROSS REFERENCE FACILITY

The purpose of this routine is to produce a listing of any/all strings and/or
keywords used within the resident program. The functions provided are identi-

cal to those performed for variables and integer constants (line numbers) by
XREF.

XFIND is 1invoked using the 'F' command, usually followed by parameters. In
the format specifications, 'kw' refers to a BASIC keyword (like GET or
LPRINT), and 'ss' refers to any user specified character string or substring
(like 'NOW IS THE TIME'). When constructing a search string, the commercial
at sign (@) character is used as a "wild card" or "don't care" character, and
will logically compare equal with any character appearing in that relative po-

sition within the text string. There are eleven options (note that spacing be-
tween the 'F' and any parameters is optional):

F . List all keyword references to screen.

F , List all keyword references to printer.

F ."kw List all keyword references starting with 'kw' to screen.

F ,"kw List all keyword references starting with 'kw' to printer.

F ."ss" List all string references starting with 'ss' to screen.

F ,"ss" List all string references starting with 'ss' to printer.

F "ss" List all string references which CONTAIN 'ss' to screen.

F "kw List all references to 'kw' to screen.

F "kwl&kw2 List all references in which kwl and kw2 appear in the same pro-

gram line to screen,

F "kwl,kw2 List all references to kwl to screen and REPLACE each occurrence
of kwl with kw2.

F List 'next' program line containing a reference to the last 'F
"ss"' or 'F "kw' command.

In the command formats, the presence or absence of a trailing quote mark dis-
tinguishes a keyword from a string reference. Both need a leading quote
mark, and string references must have a trailing quote mark, while keyword
references must not. In the reference listing, the apostrophe (') ab-
breviation for :REM will not identified separately, but combined with REM in
the listing.

The standard LBASIC Pause and Break key processing is utilized, therefore:

1) Press <SHIFT @ to temporarily suspend the listing.

2) Press any key except <SHIFT @> to resume a suspended listing.

3) Press the BREAK key at any time to terminate the listing and return to

the "Ready" prompt.
4) The "LBASIC SINGLE STEPPING'" feature may be used.
5) Pressing either <SHIFT @ or BREAK keys will remove all characters from

the typeahead buffer.

SNAPP BASIC
Page 5a - 20
April 29, 1982

EXAMPLES:

If the command F , is given while the sample program is resident, the follow-
ing printout will result:

+ 138

= 19 29 50 69 99 109 139 149
> 79

DIM 8¢

FN 49

FOR 99

GOTO 76 129

IF 78

NEXT 119

PRINT 49 159

REM 30

TO 99

~ 190

While the command F ,"" will produce this printout:
", TOO!"™ 139

"END" 150

"THIS IS A CHARACTER STRING'" 5@ 138

SNAPP BASIC
Page 5a - 21
April 2@, 1982

XCOMPRESS:
THE PROGRAM OPTIMIZATION FACILITY

The purpose of this routine is to reduce to an absolute minimum the size of
the resident BASIC program for optimal execution using the Model III inter-

preter. Programs which have been so compressed typically occupy 30 to 40%
less memory space, and run 7 to 16% faster.

Optimization consists of several phases, most of which are optional or chosen
entirely by the user's specifications:

1) Removal of remarks.

2) Removal of irrelevant blanks.

3) Removal of irrelevant tab characters.

4) Removal of extraneous colons.

5) Removal of the LET keyword.

6) Removal of quote marks at the end of a line.

7) Removal of GOTO in the sequences 'THEN GOTO' and 'ELSE GOTO'.
8) Removal of non-significant characters from variable names when the
length of the variable name exceeds two.

9) Removal of completely non-executable code.
1) Removal of variable typing characters (%,$,!,#) when a previous DEFINT,
DEFSTR, DEFSNG, or DEFDBL statement makes such explicit typing redundant.

11) Merging multiple statements into single lines.

12) Renumbering the program on a 1 x 1 basis to make line number references
as small as possible.

13) Removal of specific variable identifiers from NEXT statements.

Numbers 4, 6, and 7 above are not optional. All of the other functions are
controlled by the options. Unless otherwise specified, item 13 is OFF, and
all other options are ON.

Although item number 13 normally saves a few bytes, the primary objective in
removing the variable identifiers is to improve the performance of the pro-
gram. Our benchmarks show that FOR - NEXT loops execute up to 25% faster
with the variable identifiers omitted.

XCOMPRESS is invoked using the abbreviation 'H', optionally followed by one
or more parameters to specify your requirements for compression. Multiple op-
tions, if present, must be separated by commas.

The available options:

NC - Specifies that you do not want multiple lines (#11) merged together.
Also inhibits removal of non-executable code (#9).
NR - Specifies that you do not want the compressed program renumbered on a 1

x 1 basis (#12).

LB - Specifies that you do not want blanks (#2) and tabs (#3) removed. Also
inhibits shortening long variable names (#8) and removal of IET keywords
(#5). Under certain circumstances, a very few blanks may be removed, even
with this option set. o

LR - Specifies that you do not want remarks (#1) removed. Also inhibits re-

moval of non-executable code (#9).

SNAPP BASIC
Page 5a - 22
April 2@, 1982

LT - Specifies that you do not want variable typing characters (#10)
removed. In order for this option to function correctly, the DEFxxx (where
xxx = INT, STR, SNG, or DBL) statements must appear in a physical order
corresponding to their 1logical order. If DEFxxx statements appear in
subroutines which are referenced by GOSUB statements, those lines which
appear in the program physically before the DEFxxx statements will be treated
as if the DEFxxx statement was not in effect. We suggest that you place your
DEFxxx statements very near the beginning of the program to take maximum

advantage of this feature.
RV - Specifies that you wish the specific variable identifiers removed from

NEXT statements. In most cases, the only difference that will be noticed
from the use of this option will be faster execution. If, however, your pro-
gram executes a GOTO statement referencing a NEXT with a named variable which
is the control variable of an 'outer' loop, and depends upon the implied 'ab-
normal termination' of an un-named inner loop, the program will no longer
function identically. We have never seen a 'real-world' situation where this
occurred, but be aware of the theoretical problem.

If you wish to suppress the appearance of the information messages which nor-
mally appear on the display during the compression process, you may insert
the letter 'M' after the 'H' and before any other options, if present.

A WORD OF CAUTION:

You should retain your uncompressed code for two very good reasons:

1) A fully compressed program is hardly readable, and performing maintenance
on it would be very difficult.

2) Because of the manner in which the BASIC interpreter tokenizes state-
ments, under certain circumstances EDITing or SAVEing in ASCII can change the
syntax of a compressed program, and introduce syntax errors. As long as you
don't do either of these, the compressed program will run quite nicely, but
be aware of the hazards. An example of the type of code which will introduce
this error follows:

Your program contained:

1 IF S =T AND U = V THEN W = X
The compression routine changed it to:

1§ IFS=TANDU=VTHENW=X
Which did not cause any problem until you, for example, save the line in
ASCII. When you reload it, BASIC sees (blanks and ?? added for clarity): IF
S =TAN ?? DU =V THEN W = X. As you can see, BASIC will misinterpret this
line, believing that the keyword TAN is incorrectly used.

To summarize the above caution:
DON'T FIDDLE WITH A PROGRAM AFTER IT HAS BEEN COMPRESSED. WE CAN NOT
GUARANTEE THE RESULTS, BUT THEY WILL PROBABLY BE BAD.

SNAPP BASIC
Page 5a - 23
April 2§, 1982

AN EXAMPLE:

If the command H is issued with the sample program resident, the following
program will result: J

1 AB=4:HN=&HFFFF:PRINTFNFILES:B$="THIS IS A CHARACTER STRING" :CD=500000@: IFAB
>CDTHEN3

2 DIMJ(5):FORIZ=1T05:J(I1%)=1%"2:NEXT:GOTO3

3 PRINT"END

Note that the previous contents of lines 13¢ and 14@ have been completely re-—
moved under rule #9.

SNAPP BASIC
Page 5a - 24
April 20, 1982

SNAPP THREE - EXTERDED BUILTIN FUNCTIONS (XBIF)
A Set of Language Extensions for the Model I/III BASIC Interpreter

GENERAL INFORMATION:

This product is a collection of much needed additions to the Model III inter-
preter which will greatly extend its convenience and utility. These fea-
tures, when installed, become a part of your BASIC language.

The most important component of this product is a SUPER FAST in-memory sort
routine. We have benchmarked this against everything on the market, and beat
them all hands down. In addition, our sort is far and away the EASIEST TO
USE and MOST GENERALIZED of anything available.

Many of the facilities provided are invoked as FUNCTIONS, that 1is to say,
their use is preceded by the FN keyword, most of which require a parenthe-
sized ARGUMENT LIST, and they RETURN A RESULT. Unlike user defined func-
tions, however, you will not be required (in fact must not) issue a DEF FN
statement to establish the existence of the functions. Hence the name
BUILTIN FUNCTIONS.

The general format for invocation of a BUILTIN FUNCTION is:
variable = FN builtin-function-name (argument...)

where 'variable' is any variable of your choice (of the appropriate type,
string or numeric, depending upon the function) to receive the RESULT, and
the arguments are either STRING EXPRESSIONS or NUMERIC EXPRESSIONS (again, de-
pending upon the function). In keeping with the philosophy of the interpret-
er, blanks may be included or omitted. Please note that BUILTIN FUNCTIONS
may not be nested within a single statement. Generally, any attempt to use
two BUILTIN FUNCTIONS within the same statement will produce an Illegal func-
tion call error.

The remaining facilities are implemented as VERBS. We have chosen the SYSTEM
verb for this purpose. The general format for invocation of a SYSTEM COMMAND
ig:

SYSTEM command [operator-1[,operator-2]...]

where 'command' is either a previously defined BASIC keyword or a string lit-
eral SNAPP keyword, and operators are defined by the specific COMMAND.

If you don't already have a clear understanding of an EXPRESSION, we suggest
you read pp 1/29 & 1/3@ of the Model IIT BASIC REFERENCE MANUAL. From this
point, when we refer to 'stexp', we mean a STRING EXPRESSION, and when we re-

fer to 'nmexp', we mean a NUMERIC EXPRESSION. The judicious use of
EXPRESSIONS can greatly simplify your programming chores.

SNAPP BASIC
Page 5a - 25
April 2@, 1982

FN_PEKW

Extract Two Bytes (LSB,MSB) From A Specified Memory Location

SYNTAX:

PEKW(nmexp)
RETURNS:

number

"'nmexp' 1s evaluated as an INTEGER and the value contained in the WORD
(LSB,MSB format) is returned.

EXAMPLE :

II = FN PEKW (&H4411)

Places into II the address of the higest memory location not used by LDOS.
This value is usually called HIGHS.

POSSIBLE ERRORS:

Overflow - The argument could not be converted to INTEGER.

Syntax Error - Required punctuation not found in the expected place.
Type mismatch - The argument is not a number.

SYSTEM POKE
Replace The Contents Of A Specified Memory Area With The Supplied Value

SYNTAX:
SYSTEM POKE nmexpl,exp2
RETURNS:

nothing. This is a verb, not a function.
"'mmexpl' is the starting address of the memory area to be modified and is
evaluated as an INTEGER. If exp2 is a string expression, POKE the string to
the specified address. If exp2 is a numeric expression, convert it to an in-
teger value and POKE the word in LSB/MSB format.

EXAMPLE :
SYSTEM POKE &H420@,STRINGS (255,0)
Will ABSOLUTELY DESTROY LDOS.

POSSIBLE ERRORS:
Overflow — Exp2 was numeric, but could not be converted to INTEGER.

Syntax Error - Required punctuation not found in the expected place.
Type mismatch - Nmexpl is not a number.

SNAPP BASIC
Page 5a - 26
April 29, 1982

FN ETIM

Calculate The Difference Between Two Times

SYNTAX:

ETIM$(stexpl[,stexp2])
RETURNS:

string
‘stexpl', and if present, 'stexp2' are 17 byte character strings containing a
date/time as returned by TIMES$. If 'stexp2' is provided, 'stexpl' is the
STARTING TIME and 'stexp2' is the ENDING TIME. If 'stexp2' is omitted, then
'stexpl' 1is the STARTING TIME, and the current time of day is the ENDING
TIME. In either case, the second value MUST be greater than the first. This
function 1is designed to calculate the elapsed time for only a relatively
short period (less than 48 hours); therefore, if the date portions of the two
strings are not equal, the function assumes that the second time is ONE day
later than the first and adds 24 hours to the second time before calculating
the difference. The difference between the STARTING TIME and the ENDING TIME
is calculated, and returned as an 8 byte character string in the format of
the right-most part of the arguments.

EXAMPLE:
PRINT FN ETIM$("08/20/81 p9:00:09","98/206/81 11:00:08")
Will print '@2:90:99°'.

POSSIBLE ERRORS:
Syntax Error - Required punctuation not found in the expected place.

Type mismatch - The arguments are not strings.
Illegal function call - Probably your argument(s) contain an invalid time.

SAMPLE PROGRAM:

16 ST$ = TIMES

20 FOR I = 1 TO 14009

3@ NEXT I

4@ PRINT FN ETIMS(ST$)

5¢ END
Calculates the time required to do 1@@@P# FOR-NEXT iterations with a single
precision loop variable (it printed '@@P:0@:28').

SNAPP BASIC
Page 5a - 27
April 20, 1982

FN FILES

Return The Number Of File Blocks Currently Allocated

SYNTAX:
FILES

RETURNS:
number

The number of files which may be opened concurrently is returned. If the
Blocked file mode (BLK=ON) was specified (the default), the number is
indicated as a negative value.

EXAMPLE :
PRINT FN FILES

Will display the number of file blocks allocated. If the returned value is
negative, the files may be opened with a user-specified LRL.

SYSTEM ''SORT"

Sort Ome Or More Arrays Into Specified Sequence

SYNTAX:
SYSTEM "SORT",stexp|,nmexpl[,nmexp2]]
RETURNS:
nothing. This is a VERB, not a function.

"stexp' is a string expression containing from 1 to 32 iterations of the se-
quence '"[+-] [*]array name[,...]" The + or - indicates that (1) this array
is to participate in the 'sort key', which means that helps determine the fi-
nal order of the results, and (2) indicates whether the sort logic for this
array is to be ascending or descending. The first array name which is not
prefixed by a sign terminates key construction, and that and all subsequently
named arrays become 'tagalongs' to the sorting process; which means that they
will be sorted, but will not participate in the decision process. The *, if
present indicates 'special sequence mode' for that array only. Special se-
quence mode is meaningful only for strings and integers. For strings, spe-—
cial sequence mode means that a shorter string is to be logically padded on
the right with blanks when making the comparison to longer strings. Without
this special sequence mode, "X" will precede "X ", according to BASIC's stan-
dard comparison algorithm. With special sequencing, they will compare equal-
ly. For integers, special sequence means to treat the numbers as unsigned
binary, rather than signed binary. This will be most useful when sorting ma-
chine addresses.

"nmexpl', if present, specifies the lowest numbered element of the arrays to
participate in the sort. If you omit this specification, it will default to
1. If you use the zero elements of your arrays, be sure to specify this val-
ue, or the zero elements won't get sorted.

SNAPP BASIC
Page 5a - 28
April 2@, 1982

'nmexp2', if present specifies the highest numbered element of the arrays to
participate in the sort. If you omit this specification, it will default to
the minimum size of the arrays listed in 'stexp'.

\.r The arrays to participate in the sort may be multi dimensioned arrays, but
they will be treated by the sort as if they were singly dimensioned arrays.
EXAMPLE:
SYSTEM "SORT",'+A%Z"

Will cause the array AZ to be sorted in ascending sequence, with all elements
of the array participating except the zero element.

POSSIBLE ERRORS:
Syntax Error - Required punctuation not found in the expected place.

Type mismatch - 'stexp' is not a string expression, or 'nmexpl' or 'nmexp2'
are not numeric expressionms.
Overflow - 'nmexpl' or 'nmexp2' could not convert to integer.

Illegal function call -

1) '"nmexpl' or 'nmexp2' is negative.

2) 'nmexp2' is greater than the size of the
smallest array specified in 'stexp'.

3) 'nmexpl' is greater than 'nmexp2’'.

4) 'stexp' contains no array names,
or an invalid array name.

5) 'stexp' contains more than 32 array names.

A SAMPLE PROGRAM:
’b Is in the section 'SOME REAL-WORLD SAMPLES' of this document.

SNAPP BASIC
Page 5a - 29
April 20, 1982

SYSTEM CLEAR

This command allows you to specify the number of file blocks to be allocated
at the same time that you allocate string space. An additional optional param-
eter allows you to to change the high memory address used by BASIC.

SYNTAX:

SYSTEM CLEAR [nmexpl] [,nmexp2] [,nmexp3]

RETURNS:
nothing. This is a verb, not a function.

Nmexpl is the new value for number of file blocks. A positive value sets the
BLK=OFF file mode while a negative value sets BLK=ON (this is the default
setting on entry to LBASIC). The value of nmexpl may range from -15 to 15.

Nmexp2 is the string space specification as in the BASIC CLEAR statement.

Nmexp3 provides a means for changing the high memory address (HIMEM) used by
BASIC. Three different change methods are provided, depending wupon the
parameter value:

1) 1f nmexp3 = P, set BASIC HIMEM = LDOS HIGHS.

2) If nmexp3 <= &H4PPP, subtract that value from the current BASIC HIMEM and
use the result as the new BASIC HIMEM.

3) If nmexp3 > &H4PPP, set BASIC HIMEM to the specified value minus one,
subject to the checks that there is sufficient memory for the new value and
that it does not exceed LDOS HIGHS.

A null parameter will be left unchanged; therefore the statement SYSTEM CLEAR
p would change only the number of file blocks, while the statement SYSTEM
CLEAR ,,&HE8@@ would change only BASIC's HIMEM.

This statement will always CLOSE all files and CLEAR all variables. As a
result, it will normally be placed at or near the beginning of a program.

To facilitate 'location independence', small values (less than &H4PP@) for
nmexp3 are interpreted as requests to reduce BASIC's HIMEM by that amount.
This use can make the BASIC application less dependent upon changes in LDOS
drivers & filters. A very practical example might be to have a 'starter'
program which is executed only once as BASIC is initialized that will invoke
this command specifying &H24§ as nmexp3 (space required by the College
Educated Garbage Collector), invoke CEGC, then again invoke this command
specifying &H388 as nmexp3 (space required for Extended BASIC Mapping
Support).

In processing this statement, all files are closed, nmexpl is evaluated, a
test is made for sufficient memory to support the new file buffer areas, the
file address table is reset, the entire program is moved to its new location,
and the text line pointer is updated to reflect the new program location.
Finally, nmexp2 and nmexp3 are processed, if present.

EXAMPLE :
SYSTEM CLEAR -5,1000,8HF 809)
Resets the number of file buffers to 5, enables blocked file mode, allocates

SNAPP BASIC
Page S5a - 30
April 2@, 1982

1008 bytes of string space, and sets BASIC's HIMEM to &HF 7FF.

POSSIBLE ERRORS:
Overflow - One of the arguments could not be converted to INTEGER.

Syntax Error - Required punctuation not found in the expected place.

Type mismatch - One of the arguments is not a number.
Illegal function call - Nmexpl is not within the range -15 to 15 or nmexp3

exceeds LDOS HIGHS.
Out of memory - Insufficient memory available to satisfy the request.
Missing operand - At least one of the three parameters must be specified.

SYSTEM "ERASE"

Remove any or all arrays from the array table, thereby freeing the space used
and permitting them to be re-dimensioned.

SYNTAX:
SYSTEM "ERASE" [,arrayl,array2...]
RETURNS:
nothing., This is a verb, not a function.
If no array names are specified, all arrays are deleted, otherwise the listed
arrays are removed from the array table.

FN ID$

Read disk names.,

SYNTAX:
I1D$ (nmexp)
RETURNS:
string.
Nmexp specifies the drive number and must be in the range $-7. The function

will return an 8 byte string containing the DISKID of the disk currently 1in
the specified drive.

EXAMPLE :
XX$ = FN IDS (P)

Will return an 8 byte string to XX$, containing the ID of the disk mounted in
drive #.

POSSIBLE ERRORS:

Illegal function call - Nmexp not within required range.
Syntax error - Right parenthesis absent.

Type mismatch - Argument not a numeric expression.
Internal error - Error in attempting to read disk name.

SNAPP BASIC
Page -5a - 31
April 2@, 1982

FN PEK$

Extract multiple characters from a specified memory location.

SYNTAX:

PEKS (nmexpl,nmexp2)
RETURNS:

string.

Nmexpl is the peek address. Nmexp2 is the number of bytes to PEEK into your
string.

EXAMPLE:
PRINT FN PEKS$ (&H4225,64)

Will display the LDOS command buffer. This will normally contain LBASIC
(with options), with trailing garbage.

POSSIBLE ERRORS:
Illegal function call - Nmexp2 not in range 1-255.

Syntax error - Required punctuation not found where expected.
Type mismatch - One of the arguments is not a numeric expression.

FN UCS

Convert string to upper case.

SYNTAX:

UCS$ (stexp)
RETURNS:

string.
Each lower case alphabetic byte contained in the string is converted to upper
case, by ANDing it with &HDF, and the result is returned.

EXAMPLE :
PRINT FN UC$ (''abed")

Will print ABCD.

POSSIBLE ERRORS:)
Type mismatch - Argument not a string expression.
Syntax error — Required punctuation not found where expected.

SNAPP BASIC
Page 5a - 32
April 2, 1982

FN LC$

Convert string to lower case.
SYNTAX:
LCS$ (stexp)
RETURNS:
string.
Each upper case alphabetic byte contained in the string is converted to lower
case, by ORing it with &H2@, and the result is returned.

EXAMPLE:

PRINT FN LCS ("ABCD")
Will print abcd.

Possible errors are as for UC$

FN MAX
Return the largest value from a user supplied list.

SYNTAX:
MAX (nmexpl [,nmexp2]...)
RETURNS:
number
each argument is converted to double precision, then the largest of them is
selected, and re-converted to the numeric type of the returned variable.

EXAMPLE:
PRINT FN MAX (2,7,4,9,1,8)
Will print the value 9.

POSSIBLE ERRORS:

Syntax error - required punctuation not found in the expected place.

Type mismatch - one of the arguments is not a number.

Overflow — The value selected by the function exceeds the limits of the re-
turn variable type.

SNAPP BASIC

Page 5a - 33
April 24, 1982

FN MIN
Return the smallest value from a user supplied list.

SYNTAX:

MIN (nmexpl [,nmexp2]...)
RETURNS:

number
processing identical to MAX.

POSSIBLE ERRORS:
As for MAX.

FN_FMT

Arrange data into a String variable, as with PRINT USING.

SYNTAX:

FMT$ (stexp;item-list)
RETURNS:

string.
'stexp' is the FORMAT SPECIFICATION, and item-list is the list of variables
to be inserted into the FORMAT SPECIFICATION, as described in the BASIC
manual pp 3/4 - 3/8. Two restrictions are imposed on the use of FN FMT$: 1)
The generated string may not exceed 255 bytes. 2) The closing paren MUST be
the last non-blank byte before the end of the statement (which is defined as
end of line, or colon).

EXAMPLE:
X$ = FN FMTS$("HELLO ####'";49;)
Will cause X$ to contain "HELLO 49",

Use your imagination with this function. It is probably the most powerful ad-
dition ever made to Microsoft BASIC.

POSSIBLE ERRORS:

Syntax error - Incorrect punctuation, or closing right paren is not immedi-
ately followed by end of statement.

Illegal function call - The portion of the statement following the FMI'$ func-

tion contains another BUILTIN FUNCTION reference.)
String too long - The generated string exceeds the 255 byte maximum string

size.,
Other errors may be generated by our implicit use of the PRINT USING routine.

Please note that unless the item list is terminated with a semicolon, the gen-
erated string will be terminated by a carriage return.

SNAPP BASIC
Page 5a - 34
April 2@, 1982

SYSTEM DELETE

Delete statements from the resident BASIC program.
SYNTAX:
SYSTEM DELETE nmexpl [-[nmexp2]]

RETURNS: i
nothing. This is a verb, not a function.

This verb allows you to delete statements from an executing BASIC program
without a return to the 'Ready" prompt. This might be used, for example, to
delete DATA statements after they have been READ, thereby freeing up memory
for other purposes. Parameters following the DELETE keyword are identical to
those normally allowed for the DELETE statement, but the requirement that the
end range line number be present in the program has been removed; therefore,
SYSTEM DELETE 1@¢@@- will function as expected. Processing steps are as
follows:

a. The parameters are evaluated and a Syntax error is generated if they are
incorrect.

b. If the delete block end address is <= start address, an Illegal function
call error is generated.

¢. If the SYSTEM DELETE line is above the range of lines being deleted, the
line pointer is reduced by the delete block size. If the SYSTEM DELETE line
is below the range of lines being deleted, the line pointer is not changed.
If the SYSTEM DELETE line is within the range of lines being deleted, the
line pointer is reset to the first line following the delete block; there-
fore, the SYSTEM DELETE statement may delete itself.

d. The Variable Table, Array Table, and Free Space addresses are reduced by
the delete block size.

e. The program and table data are moved down into the block of line areas be-

ing deleted.
f. The line address chain pointers are reset.

A Caution:

There is no examination of addresses held in the variable and array tables;
it is therefore the user's responsibility that those addresses are not affect-
ed by the movement of program text down into the delete block area. There
are at least three cases where addresses within the program area are con-
tained in the variable or array tables: 1) String literals contained in the
program., 2) The Function Name variable table entry contains the address of
the DEF FN line which defines the Function Name. 3) The address of the
statement which is the target of an ON ERROR GOTO statement is contained as
control information within the interpreter.

A Suggestion:

Because of this characteristic, you would be well advised to place lines
which contain DEF FN statements, or those which execute IET statements with
string 1literals EARLY in the program, BEFORE the range of lines to be
DELETED. If this is not desirable, then you must ensure that these lines are
executed AFTER the DELETE operation. If, for example, a DEF FN statement is
AFTER the delete block, the function will not correctly execute following the
Qelete operation, unless the DEF FN statement is re-executed. Furthermore,
if the statement which is to be the target of an ON ERROR GOTO statement will
be moved upward by the DELETE operation, the ON ERROR GOTO statement must be

SNAPP BASIC
Page 5a - 35
April 29, 1982

executed (or re-executed) AFTER the DELETE operation.

SYSTEM "'SWAP'

Exchange the values of two named variables. Either or both of the variables
may be elements of arrays.

SYNTAX:

SYSTEM '"'SWAP',variablel,variable2
RETURNS:

nothing. This is a VERB, not a function.

EXAMPLE :
SYSTEM ''SWAP" ,Fl#,F2#

The contents of F2# are placed into Fl#, and the contents of Fl# are placed
into F2#.

POSSIBLE ERRORS:
Type mismatch - The specified variables are not of the same type.

Illegal function call - The second variable is a non-array variable which has
not been assigned a value.

FN_ROW

Return a number from § to 15 indicating the current vertical position of the
cursor on the display.

SYNTAX:
ROW
RETURNS:
number.

SNAPP BASIC
Page 5a - 36
April 20, 1982

FN PW

Calculate an encoded password, or extract the encoded master password from
any mounted disk.

SYNTAX:
PW (expression)
RETURNS:

number.
If expression is numeric, it must be in the range P-7, and specifies a drive

number from which the encode of the master password will be retrieved. If ex-
pression is a string, the function will return the password encode value cal-
culated from the first 8 bytes of the string value.

POSSIBLE ERRORS:
Illegal function call - The argument is numeric, but not in the range p-7.
Internal error - Error in attempting to read the disk master password.

FN HEX
Convert a numeric expression to its hexadecimal equivalent.

SYNTAX:
HEX$ (nmexp)
RETURNS:.
string.
'nmexp' is evaluated as an integer, and the character string representation
of the hex equivalent is returned.

POSSIBLE ERRORS:

Type mismatch - The argument is not numeric.
Overflow - Argument could not be converted to integer type.

SNAPP BASIC
Page 5a - 37
April 20, 1982

FN_PK$

'Pack' a string into a compressed internal representation.

SYNTAX:

PK$ (stexp)
RETURNS:

string.
The source string is compressed, using a 4 byte -> 3 byte algorithm. The
source string must have a length less than or equal to 252 bytes. Characters
in the source string must be in the range 2¢H to 5FH, which precludes the low-
er case alphabet. For each group of 4 characters in the source string, 3
characters will be generated in the result. If the length of the source

string is not an even multiple of four, it will be effectively be 'padded’
with blanks to even it out. This function will be useful in building large
disk files, when disk space is at a premium .

EXAMPLE:

B$ = FN PK$ ("ABCDEFGH")
PRINT LEN(BS)

Will cause an encoded form of A$ to be stored in B$, with a length of 6.

POSSIBLE ERRORS:

Type mismatch - Argument is not a string.

Illegal function call - 1) Source string contains illegal characters, or 2)
Length of source string is P or greater than 252.

SNAPP BASIC

Page 5a - 38
April 20, 1982

FN_UPK$

Decode strings compressed by the PK$ function.

SYNTAX:

UPKS (stexp)
RETURNS:

string.
The compression logic of the PK$ function is reversed, and the string is re-
turned to ASCII format.

EXAMPLE:
PRINT FN UPK$(B$)
If used with the B$ created in the example for PK$, will print 'ABCDEFGH'.

POSSIBLE ERRORS:

Illegal function call - Length of source string not evenly divisible by
three, or not in the range 3-189.

Type mismatch - Argument not a string.

SNAPP BASIC
Page 5a - 39
April 2§, 1982

FN PDAT
'Pack' a date into a two byte internal representation.

SYNTAX:

PDAT (stexp)
RETURNS:

number.
'stexp' is evaluated with the assumption that it contains a date in the for-
mat MM/DD/YY, as returned by the TIME$ function. 1If the string is longer
than eight bytes, only the first eight will be used. The date is converted
into an integer representing ‘'relative day of century', with a date of
f1/91/5@ returning a value of zero. Dates prior to the mid-century date will
return a negative value, while dates subsequent to the mid-century date will
return a positive value.

EXAMPLE :
BZ = FN PDAT ("99/13/81")
Will return the value 11578.

POSSIBLE ERRORS:
Type mismatch - Argument is not a string.
Illegal function call - Invalid date string.

APPLICATION NOTES:

This function will be useful in two ways: 1) By converting dates into inte-
ger format, they may be stored more efficiently in files and arrays when mem-
ory usage or disk storage space may be of critical concern. 2) By
representing dates as numbers, arithmetic may be performed thereon, facilitat-
ing computations in business applications (e.g. NET 38).

SNAPP BASIC
Page 5a - 4§
April 2¢, 1982

FN UDATS

Decode dates compressed by the PDAT function.

SYNTAX:

UDATS$ (nmexp)
RETURNS:

string.,
The compression logic of the PDAT function is reversed, and the number is con-
verted to an ASCII format date.

EXAMPLE:
PRINT FN UDATS$(B%)
If used with the B% created in the example for PDAT, will print '@9/13/81'.

POSSIBLE ERRORS:

Overflow - Argument could not be converted to integer.

Illegal function call - Numeric value was outside " the range which could be
converted to a valid date.

SNAPP BASIC
Page 5a - 4]
April 24, 1982

SNAPP FOUR - EXTENDED BASIC MAPPING SUPPORT (XBMS)
Automated Video Display Management for the Model I/III BASIC Interpreter

GENERAL INFORMATION:

This product is designed to automate for the BASIC programmer the tasks of
presenting information on the video display and accepting information from
the keyboard operator. Programs which use this facility will normally use

much less memory, will be coded and debugged much more quickly, and will ex-
ecute more quickly when doing screen and keyboard I/0. The facility, when in-
stalled, becomes part of your BASIC interpreter.

The system consists of two major components: 1) The OFF-LINE COMPONENT, which
is a conversational BASIC program named GENERATE/BAS. You will utilize this

component to describe to the system the screen formats you wish to use. 2)
The ON-LINE COMPONENT, which becomes a part of your BASIC interpreter at in-

stallation time. You will issue commands to the ON-LINE COMPONENT from with-

in your BASIC program to variously initialize a screen, send data to the
video display, and receive data from the keyboard operator.

The interface between your BASIC program and the ON-LINE COMPONENT is via a
verb. We have chosen the SYSTEM verb this purpose. The general format of a
SYSTEM-COMMAND 1is:

SYSTEM command [argument [,argument]...]
where command is a string expression defined by the particular
SYSTEM-COMMAND.

SCREENS, FIELDS, and ATTRIBUTES:

A SCREEN is the image of how you wish information displayed on the video to
appear, It consists of one or more FIELDS, which are the elemental data
items being sent to the display and received from the keyboard. In this sys-
tem, a screen may contain up to 99 fields. Each field has a number of
ATTRIBUTES which tell the system precisely how to handle it.

The first attribute is POSITION, which describes where on the display this
particular field is to appear. When you define the position attribute, you
specify a ROW, which is the vertical position indicator (P-15), and a COLUMN,
which is the horizontal position indicator (p-63).

Another attribute is CAPTION, which is like a 'tag' for a field. An example
of a caption might be "LAST NAME", if your screen called for name & address
data. A caption is a character string which will appear on the display
field, and may range from P to 63 characters.

Another attribute is FIELD LENGTH, which defines the maximum number of charac-
ters to be displayed on the video or accepted from the keyboard. The data
component of the field may range from 1 to 24f in length (numeric fields have
smaller maximum field lengths, depending upon their data type).

The data component also possesses a POSITION attribute, which it will normal-
ly 'inherit' from the position of the caption, but this may be overridden.

SNAPP BASIC
Page S5a - 42
April 2, 1982

A field may be PROTECTED, which specifies that it is to be displayed only,
and that the keyboard operator may not change it. The most common use of the
protection attribute is probably for error messages.

The data component of the field has a VARIABLE NAME associated with it. This
defines for the system what variable to find in your program when displaying
the screen, and what variable to update after the operator has overkeyed the
field. The variable name may be a simple variable, such as NL$ or AD#, or it
may be a subscripted variable, such as NL$(3) or AD#(5). It even may contain
an expression as the subscript, such as NL$(I) or AD#(I+J-K). The variable
name may not exceed 13 positions in length.

If the variable is a number (rather than a string), it may be POSITIVE ONLY,
which will prevent the operator from entering a negative value into this data
field.

Single and double precision variables also have the attribute NUMBER OF
DECIMAL PLACES, which controls both the way information is displayed on the
screen and what the operator is permitted to enter.

Our handling of numeric fields can relieve you of many burdensome chores in
editing numeric data. If, for example, you have defined a seven position
field, specified that it is to contain two decimal places (as in dollars and
cents type information), and that it may contain negative numbers, then the
system logically looks at the field as Snnn.nn, where 'S' is the spot for the
minus sign, 1f used, 'n' is a logical digit spot, and '.' is the position of
the express or implied decimal point. THE SYSTEM WILL ABSOLUTELY ASSURE THAT
DATA ENTERED INTO THIS FIELD WILL MATCH THIS LOGICAL VIEWPOINT OF THE FIELD.
In this example, you can be assured that you will always.get back a number N,
such that -999.99 <= N <= 999.99, and that it will never contain more than
the specified two fractional digits.

THE OFF-LINE COMPONENT:

The off-line component is contained in a BASIC program named GENERATE/BAS.
When you RUN this program, it will first prompt you for a SCREEN NAME. You
may chose any name, up to eight characters, which is a valid FILE NAME. You
may specify a drive number, separated by a colon, but you may not specify any
extension, as this program will create one or two output files, and will as-
sign his own extensions to keep them separate. If the SCREEN NAME you enter
is a previously existing screen, it will be fetched from disk, and the image
displayed for you. Otherwise, a blank screen with only our command prompt
line will be displayed. The command prompt line shows the following options:
{N>ext - positions the cursor at the 'next' field on the screen for editing
or insertion. This function is duplicated by the TAB key.

{P>revious - positions the cursor at the 'previous' field on the screen for
editing or insertion. This function is duplicated by the ESC key.

{A>dd - is a request to construct a NEW FIELD which is to be positioned on
the screen AFTER all existing fields. This is the only valid option for a
brand new screen.

§I>nsert - is a request to construct a NEW FIELD which is to be positioned
Just before the field on which the cursor is now placed.
<E>dit - is a request to change some attributes of an existing field on which

the cursor is now placed. If the only attributes you wish to change are
those of POSITION, you may also use the four arrow keys for this purpose.

SNAPP BASIC
Page 5a - 43
April 2@, 1982

<{D>elete ~ 1is a request to discard the field on which the cursor is now
placed.

{S8>ave - indicates that you are done constructing and/or editing this screen.
You will be prompted for information as to whether or not you want a documen-
tation file created, and whether or not you want a printed copy of the
documentation.

The four arrow keys may be used to 'move' the field upon which the cursor is

currently placed in the direction indicated by the arrow itself. If you wish

to move a field more than one or two positions, you will probably choose to
type in a number before pressing the arrow, which will cause the field to

move the indicated number of spaces without the nuisance of refreshing the en-
tire screen for each move.

When you specify any of the commands A, I, or E, you will be moved from com-—
mand mode to field specification mode, where you specify or change the FIELD
ATTRIBUTES. Each prompt will ask you for an attribute, and display what will
result if you supply only <ENTER>. The first two prompts are for the
POSITION ATTRIBUTE, and will call for ROW and COLUMN. Don't worry about be-
ing a little off from where you really want the field, you can easily change
these later with the arrow keys. The next prompt will call for the CAPTION.
The next few prompts relate to the DATA COMPONENT of the field. You will be
asked for the length and whether or not you want to override the position in-
herited from that of the caption. The next prompt will query whether this is
to be a PROTECTED data field. You then be asked for the VARIABLE NAME. The
variable name must be EXPLICITLY typed. That is to say, it MUST contain a %,
#, !, or $§. This explicit typing requirement ONLY applies during the gener-
ation of a screen image. In your BASIC program which uses the screen, you
may still use implicit typing if you wish to do so. If the variable is numer-
ic, you will be asked if negative numbers are to be accepted at entry time.

If the variable is single or double precision, you will be asked for the
NUMBER OF DECIMAL PLACES. Upon answering each of these prompts, the screen

will be re-displayed with the new or revised field, and you will be returned
to command mode.

In the event that you exceed the screen size limit, you will receive a mes-

sage to that effect, and you will need to either reduce the number of fields
or shorten a variable name. (see SYSTEM RESTRICTIONS)

When you are finished working on the screen, and you issue the Save command,
a file will be created containing information to be used by the ON-LINE
COMPONENT. This will be named "screenname/MAP", and will contain all informa-
tion about the attributes of the fields. If you have been updating a previ-
ously existing screen definition, the previous file will be destroyed. You
might be well advised to make a copy of the /MAP file if you anticipate major
changes thereto.

When you request a <S>ave of your screen definitiom, you will first be asked
if you want the fields sorted. 1In order for the TAB, BAC@-TAB, EXPRESS TAB,
AND EXPRESS BACK-TAB functions to work as described, the fields must be sort-
ed., If, however, you have a special requirement f(e.g. you wanE to arrange
the screen into logical vertical columns, with data entry proceeding down the
screen rather than left to right), you may specify that the fields NOT be
sorted. Most applications will work best with a sorted screen, but you are

SNAPP BASIC
Page 5a - 44
April 2§, 1982

welcome to experiment with this. After the sort question, you will be asked
if you want a documentation file to be created, and if you want a hard copy
of the documentation. This documentation will save you a lot of time when
creating your application.

If you request that a documentation file be created, it will be named
"screenname/REM", and will consist of REM statements, starting with line num-
ber 64@PH, which you may merge into your program to give you reminders about
the screen while you are writing your application. If you request a printout
of the documentation , you will get a printed copy of the same information as
that in the "/REM" file.

Since GENERATE/BAS does extensive processing when LOADing and SAVEing your
screen information, and is an interpreted BASIC program itself, it is rather
slow. Most users will not find this very distressing, because this program
is only used infrequently during application development, and the ON-LINE com-
ponent, which the end-user sees, is very quick. In any event, we have writ-
ten GENERATE/BAS so it may be compiled using Microsoft's BASIC Compiler
(BASCOM). 1If you wish to compile GENERATE/BAS, the only change necessary is
to remove the CLEAR statement, which is in the first line of the program.

THE ON-LINE COMPONENT:

This is the easy part. There are only three primary commands. These three
are to initialize a screen, to send a screen to the display with your data,
and to receive the updated information. The remaining commands allow you to
selectively override the protected / unprotected specifications you made at
GENERATE time. You relax, and we'll do all the hard work. The logic struc-
ture of a simple application should be the model for your own, more complex
applications. A very simple model looks like:

14 INITIALIZE SCREEN
29 SEND SCREEN
3¢ RECEIVE SCREEN

4¢ IF ERRORS, PRINT INDICATIVE MESSAGE
5¢ IF MORE TO DO THEN GOTO 20

The syntax of the initialization command is:
SYSTEM "INIT",string-expression [,numeric-expression]

where string-expression may be a literal, a string variable, or anything that
will resolve to the SCREEN NAME you assigned when you GENERATED this screen.
Please note that while most applications might use only one screen, that you
are not limited in any way as to the number of different screens you wish to
use. Initialization, however, takes a few (not more than 3.5) seconds, and
must be donme each time you wish to use a DIFFERENT screen. A well designed
application, therefore, will choose to limit the number of times the screen

CHANGES to the least required to accomplish the desired function. During the
initialization, the CAPTIONS from the '/MAP' file will appear on the screen.

The data areas will not appear until the first SEND, which will normally fol-
low immediately.

SNAPP BASIC
Page 5a - 45
April 24, 1982

Numeric-expression, if present, specifies the start of an 896 byte (&H380)
memory block in which to load the '/MAP' file. This memory block must have
been protected upon entry to BASIC, or subsequently via the expanded CLEAR
statement from our BUILTIN FUNCTIONS product. The start of this block must
be > BASIC's HIMEM, and the end of this block must be <= LDOS HIGHS. If nu-

meric-expression is omitted, the memory block start address will default to
BASIC's HIMEM plus one.

The easiest way to position this block, given the variable nature of LDOS
HIGH$, is to place the following statements at the start of your program:
SYSTEM CLEAR ,,p 'Move BASIC's HIMEM up to the limit.
SYSTEM CLEAR ,,&H38¢ 'Make room for the /MAP file.
SYSTEM "INIT",'screen" 'Intialize XBMS screen at the current HIMEM+1.

If you will be using CEGC concurrently with BASIC mapping support, the follow-
ing statements will do the job:

'SYSTEM 'CEGC",P 'Turn off the Garbage Collector, if he was on.

SYSTEM CLEAR ,,§ 'Move BASIC's HIMEM up to the limit.

SYSTEM CLEAR ,,&H24§ 'Make room for CEGC.

SYSTEM '"CEGC" 'Enable CEGC at the current BASIC HIMEM+l.

SYSTEM CLEAR ,,&H38f 'Make room for the /MAP file.

SYSTEM "INIT","screen" 'Intialize XBMS screen at the current HIMEM+1,

POSSIBLE ERRORS:

Type mismatch - The argument is not a string expression.

Syntax Error - Either SNAPP-IV is not installed, or you completely omitted
the argument, which is required.

Qut of memory — The named screen is too large. You must have ignored an er-
ror message when you GENERATED this screen. Go back to GENERATE and try
again.

File not found - The named screen was not found on any resident disk. Either
you don't have the right disks mounted, or you spelled the SCREEN NAME
incorrectly.

Internal error - The /MAP file is not in the correct format.

Illegal function call - The memory block specified or defaulted is not proper-
ly protected, or overlaps the range currently in use by the College Educated
Garbage Collector.

The syntax of the send command is:
SYSTEM "SEND"

Note that there are no arguments. The system 'remembers' what screen you are
currently using from the preceding initialize command. The system will, in
response to this command, search your program for the variables named in the
generation of the screen, and if they contain values, format them into the da-
ta areas of the screen. What do you do? 1) Remember to DIM any arrays
which are needed by this screen. 2) Relax and let us do the driving!

POSSIBLE ERRORS:

Internal error - The screen table stored in high memory has been corrupted.
Either you have loaded something on top of it (we warned you not to do that),
or your memory is defective.

SNAPP BASIC
Page 5a - 46
April 29, 1982

> |

The syntax of the receive command is:
SYSTEM "RECEIVE" [,numeric-expression]

where numeric-expression, if present, may be an integer constant, a variable,
or anything which will resolve to a FIELD NUMBER, which specifies the field
in which you wish the cursor placed for the operator to commence entering in-
formation into the screen. If you omit numeric-expression, or specify an in-
valid field number, the cursor will be placed in the first unprotected field
on the screen, otherwise it will be placed in the field you specify. The sys-
tem will, in response to this command, TAKE CONTROL of the Model III, and
work with the operator until the operator presses ENTER, ctl<E>, or ctl<Q>.
At that time, control will return to your BASIC program, anything the oper-
ator keyed on the screen will be assigned back to the corresponding variables
in your program, and a newly reserved variable ZZ$ will contain the value of
the key which caused a return. That is to say, ASC(ZZ$) will always be 5,
13, or 17. 1In this way you can issue special instructions to the operator
like "Press ctl<E> to EXIT, ctl<Q> to QUIT, or ENTER to update this record",
and you will be able to determine what the operator wanted. In addition, an-
other reserved variable, ZZ%, will contain the FIELD NUMBER of the field in
which the cursor was positioned at the time that the operator returned con-

trol to your program.

POSSIBLE ERRORS:

Out of string space - We told you we were going to update your variables, in-
cluding the string variables. Don't be so chintzy on string space. By the
way, we won't fragment string space like a BASIC routine would, so you won't
see the 'garbage collection' pauses nearly so much, if at all, with this
product.

Internal error - as for receive.

Illegal function call - numeric expression greater than 255.

The final two commands allow you to override the protected / unprotected at-—
tributes assigned to fields at GENERATE time. This can give you additional
flexibility where, for example, the great majority of the time a field is not
to be updated, but occasional special requirements dictate that it may re-
quire modification.

The syntax of the command which allows you to force a field to be protected
is:

SYSTEM "PROT",nmexpl [,nmexp2...]
where nmexpl, etc. specify field numbers. Invalid field numbers are ignored,

but a field number expression outside the range P-255 will produce an Illegal
function call.

?he syntax of the command which allows you to force a field to be unprotected
is:

SYSTEM "UPROT'",nmexpl [,omexp2...]
with the same format as the PROT command.

Note that the effects of these commands will be delayed until the next
RECEIVE command is issued.

SNAPP BASIC
Page 5a - 47
April 26, 1982

NOTES:

The SEND command will turn off the cursor, to avoid its annoying flicker
while placing your data on the screen. The RECEIVE command will also turn
the cursor off, turning if on only when actually soliciting operator inmput,
and immediately after obtaining the desired keystroke, turn it right back
off. All of this produces a more attractive screen for the operator. If you
are using SNAPP-IV for ALL video/keyboard I/0, this will never be a problem.
If however, you wish to do some of you own I/O, and wish the cursor to be dis-
played, you will have to turn it back on yourself. Just PRINT CHR$(14).

SYSTEM RESTRICTIONS:

This system requires that you reserve 896 bytes of memory to accommodate the
/MAP information during execution. While the default location for this infor-
mation is immediately above BASIC's HIMEM, you may override this in the INIT
command to prevent conflicts with machine language routines from SNAPP or oth-
er software vendors.

The formula for the memory space requirement for the screen information is as
follows: 6 * the number of defined fields, plus the summation of the lengths
of all the variable names, plus one. If this exceeds 896, you are in trou-
ble. If the average length of your variable names is three or less, you will
be able to use the system defined maximum of 99 fields, and never run out of
space here. If you ever run into this problem, check to see if you have any
blanks in subscript expressions in your variable names. That is the first
thing to get rid of. Otherwise, you will have to re-design the screen for a
few less fields. Remember that, if necessary, you can PRINT additional infor-
mation on the screen providing that you do so AFTER the INIT statement.

TECHNICAL INFORMATION:

The information contained within this section is NOT necessary for use of
this product. It is provided primarily for those programmers who might wish
to understand the format of our screen files, perhaps with the idea of writ-
ing their own programs to manipulate them.

We treat the '/MAP' file as two logical files, one of which contains the cap-
tions, the other of which contains all other information relating to your
screen definition. We make them one physical file to reduce OPEN/CLOSE over-
head processing time. FEach of the logical files contains 'variable length'’
logical records, one for each field on the screen, and is terminated by a HEX
'"FF' as a file delimiter, with each logical file starting at a sector
boundary.

SNAPP BASIC
Page 5a - 48
April 2@, 1982

.

Within the first section of the file, which contains the captions, a logical
record appears as follows:

REC+) Total length of this logical record.
REC+1

BIT 7 Reserved.

BITS 6-0 Row of caption.
REC+2 Column of caption.
REC+3 The caption itself. This element varies in size, and its size can be
calculated as (REC+§)-3.

Within the second section of the file, which contains all remaining informa-
tion about your screen definition, a logical record appears as follows:

REC+® Total length of this logical record.
REC+1 Row of data field.

REC+2 Column of data field.

REC+3 Data field length.

REC+4 Number of decimal places.

REC+5 A series of bits:
BIT 7 Protected field if on.
BIT 6 Negative numbers o.k. if on.
BIT 5 Reserved.
BIT 4 Not used.
BIT 3 Double precision if on.
BIT 2 Single precision if on.
BIT 1 Integer if on.

BIT #§ String if on.
REC+6 Variable name. This element varies in size, and its size can be calcu-
lated as (REC+f)-6.

SNAPP BASIC
Page 5a - 49
April 2@, 1982

OPERATOR'S GUIDE:

The system you will be using was designed using an automated screen manage-
ment facility called EXTENDED BASIC MAPPING SUPPORT. As all of the programs
in this system will be using this facility, there are many keyboard/screen
features and options which will be identical throughout the system.

When the application program wants to display some informatiomn to you, it
will appear as a series of FIELDS on the screen. Most fields will have a
CAPTION AREA and a DATA AREA. The CAPTION AREA is just a 'tag' to describe
the purpose of this field. The DATA AREA is usually a place where you may
fill in new information or change existing information. If the program is
sending data to you in a field, it will be displayed right justified in the
DATA AREA if it is numeric information, or left justified if it is character
information. If the program does not send data to you for a particular
field, that DATA AREA will appear as a series of small blocks to show you
that this is a 'fill in the blanks' place on the screen.

Normally, immediately after sending you a screen, with or without information
filled in, the program will expect you to fill in one or more fields with new
or updated information. When this, occurs, the CURSOR, a blinking block, will
appear in the first position of the DATA AREA chosen by the programmer. You
may then begin entering information as required by the particular
application.

A number of SPECIAL KEYS have been defined to make your job of filling in the

information easier. In the following discussion, ctl1<LETTER> refers to the
combination Shift, Down-Arrow, and the indicated letter.

The Down-Arrow key, on the left side of the keyboard, functions as a TAB key,
in that it moves the CURSOR to the first position of the field following the
one in which it is currently sitting.

The Up-Arrow key, right above the Down-Arrow key, acts as a BACK-TAB, in that
it moves the CURSOR to the first position of the field preceding the one in
which it it currently sitting.

Both of these keys will 'wrap around' from the last field on the screen back
to the first , or vice versa.

Ct1<F>is an EXPRESS TAB, in that it moves the cursor to the first field on a
lower line on the screen.

Ct1is similar, except it performs an EXPRESS BACK-TAB function.
Shift-Left-Arrow and Right-Arrow without shift keys move the cursor within a
field to allow you to EDIT information already there. These two keys are not
functional in numeric fields.

The Left-Arrow key, in the upper right of the keyboard, erases the last char-
acter you typed in, and is functional for all field types. This key is NOT
functional when you are in the middle of a field, having positioned yourself
there using the shift-left-arrow or right-arrow keys.

Ct1<R> ERASES the field in which the cursor is currently located.

Ct1<T> will function as an 'ERASE TO END OF FIELD KEY', which might save you
time rather than typing blanks to the end of the field.

The ENTER key, the ctl<E> key, and the ct1{Q> key are used as signals to the
system that you are ALL DONE WITH THIS SCREEN. Don't press any.of the§e keys
until you are completed with your entries. Your programmer will advise you

SNAPP BASIC
Page 5a - 50
April 2@, 1982

which of these to use for what function, but in most programs, you will nor-
mally press the enter key.

All remaining keys on the keyboard function as standard typewriter keys.

Normally, pressing one of these keys will cause the corresponding character
to be displayed at the current cursor location, and the cursor to advance to
the next location. 1If you fill a field up, the cursor will automatically ad-
vance to the next field, but if you enter your information into a field and
there are extra spaces left, you will need to hit the down-arrow key to ad-
vance to the next field.

NUMERIC FIELDS: »
Some special rules and features apply to fields that the programmer has de-
fined as NUMERIC ONLY. For example, if the programmer has spec1f1ed that the
number is to contain two digits after the decimal point, it 'will not be neces-
sary for you to enter a decimal point, as it will be automatically inserted
for you in the appropriate position. It will not, however be displayed imme-
diately on the screen, but only when you 'exit' that field and move to the
next field. You may insert your own decimal points, if you wish (although it
is probably easier not to), but if you do, you will not be able to enter more
digits after the decimal point than specified by the programmer when the pro-
grammer defined the field. If the programmer has specified that the field
may contain negative numbers, you may enter them, but you must put the minus
sign in first. Of course, you will not be able to enter any letters, etc. in-
to a numeric field.

SNAPP BASIC
Page 5a - 51
April 24, 1982

SNAPP FIVE - EXTENDED FILE MAPPING SUPPORT (XFMS)
Automated Disk Input/Output Management for the Model I/III BASIC Interpreter

GENERAL INFORMATION:

This product is designed to automate for the BASIC programmer the task of mov-
ing data elements to and from a direct file. 1In Microsoft BASIC, this is a
clumsy chore, as the FIELDed variables may not be directly be referenced by
user logic. Programs which use this facility will normally use less memory,
will be coded and debugged more quickly, and will execute more quickly when
doing disk input/output. The facility, when installed, becomes part of your
BASIC interpreter.

The interface between your BASIC program and this product is via a verb. We
have chosen the SYSTEM verb for this purpose. The general format for invo-
cation of a SYSTEM COMMAND is:

SYSTEM command [argument[,argument]...]

where 'command', for the purpose of this product, will be either GET or PUT,
and the arguments are defined in the separate discussions of the commands.

WHAT'S WRONG WITH THE WAY IT IS NOW:

Direct file processing in BASIC was an afterthought to what started life as a
simplistic problem solving language. Unfortunately, the program level imple-
mentation survives what was initially a 'band-aid' solution to an immediate
problem. In most high-level languages, a programmer may define a direct cor-
relation between his program variables and a direct access file buffer, with
any necessary conversions normally performed automatically by the high-level
language. In this implementation of BASIC, however, the programmer is limit-
ed to an overlay definition of the file buffer (using the FIELD statement)
which consists ONLY of string variables. This imposes upon the programmer
the requirement of EXPLICITLY moving all his variables to and from the file
buffer, and specifying the necessary conversions.

Furthermore, since the memory address of normal string variables is subject
to dynamic alteration, and the FIELDed string variables are only loosely con-
nected to the file buffer (no checking is done by the interpreter to insure
that the program does not inadvertently move them away from the file buffer),
the programmer must be very careful when updating the FIELDed variables not
to do so in a way that can cause their location to be moved. Failure to fol-
low this convention will result in particularly hard to shoot 'bugs', as sub-
sequent references to the FIELDed variable will, in fact, reference a newly
created variable in the normal string area, and not the file buffer.

An additional penalty paid by the BASIC programmer in the current implementa-

tion is that two variables must be normally used for each data element, ome
in the field buffer, and one for normal program use. This wastes a limited

resource, and leads to additional confusion.

To further complicate programming direct files, string variables are padded
with blanks to fill out the FIELD length, so that equal comparisons may not

SNAPP BASIC
Page 5a - 52
April 20, 1982

7861 ‘@z 11ady
€6 - BC 38eg
OISVd ddVNS

4O # HWV320ud

1911 s}00] piodax Lipurdemr InQ *JUBISUOD A[[BIJUISSI UIEWSI
I1s ojduexs SKHJX 9yl ur °pod paemiozlydreiis oy3 a11ym ‘£11e1juduodxa moad
031 woas Lem Lem pro ay3 Buisn ,1030e3 uorsnjuod, a3yl ‘suoriedridde d13stEAa
2iom 103 eyl putm ut dasy ased[d °*3Inofe] piodaa aydmis Kisa e suidewr s,397

*AVM Q770 3HI WV¥20dd FT1dWVS

*adf3 e3
-Bp #M3u SIY] I10J L][ed13EmMOINE pamiojiad aq 1114 S30Ul12331 UuO1IdoUNI $YHD Ppue
OSV 9y3 ©sa0uUd13dId1 UOTIOUNI PpIUOTIIUSW 2A0Ge 2Yy3 SuljepuUTWI[2 03 uo13IpPpPE U]

u‘u 1nd
(%2Z)$¥9HD = $2Z 13991

($2Z)08V = %2z
u‘u 139
« o o ‘szz SV -[L N (I'IHI&

$S14Y3
1] 2p0d U23JTam 1943 2APY nok J1 “YIOYINI HIXHE ENO Suisn usaq saey £Lpeaa
-18 Aew nojy -39selep 9yl ur uorjrsod suo satdndodo L[uo pue ‘¢Ggz-¢g 98uex ay3
ur saa82jur aa13rsod 2103s 03 posn aq Apm 3dL] eiep SIYl *WIOFINI HIAE ANO
a&&: eJjep mau éqf 11B2 1114 @M *3jqnop pue ‘a18urs ‘ao8ajur ‘Buriis jJo sadiy
Bugnsgxa ay3 3u;1uema[ddns ‘ad4£3 elep mou B 3urjyep 03 3Jurod aae am ‘LyjeUL4

*8urssodoad 139 Suianp mayl 2aomax A1dmis [ieYys am ‘sajqeriea
paQIdId woay sjyuerq Suiyrea3 sy3 Surjpuey jJo mayqoad Syl BA[0S 03 I3pac Ul

*sjuamale3s IOd Pue 139 2yl ur pasn 3soyl
y3im duks ur Jusmelels (III4 oYl UI sisqunu 1333nq oy3 Buidsdy 3Inoge pouIID
-u0d aq 03 Kiessad3u 133u0] ou ST 3T IBY] ST 2A0Qe 2yl Jo 31ja2uaq 23uriy y

*(S20ud13331 uo13duny (JAD Pue ‘SAD ‘IAD @yl 3Bulpnyd
-ur) 139 B I193J8 0 °(S90U133I31 UOIIdUNY SMIW Pue ‘¢SMW ‘SIMW 2yl pue SIIST
ayjy Burpniour) INd B 21033q pe3Indaxa aq L]jemiou pInom YOdIym sjuamwa3Irlis (III>
ayy 11e Surjeurwila ‘A[leo13lPWolne pamiojiad Bq [[IM SUOTISIBAUOD LIBSSIDAU
118 ‘s3juswoie3s INd Pue 139 3Iemaoj mdu oy3 Juissasdoad ul 2113 3yl wWoij pue
03 Sutaom sarqeraea weiBoxad ayj Buruiysp uoissaidxs Buials e °q |11 3Juawnd

-1e SIYL °sSqiaa Ind pPue 139 2yl o3 juamnBie pityl e ppe 03 Buro8 aie am ‘3IxeN

‘81
91qe1IPA PaQIIIL Syl priom 2yl Ul 3I3ym Jo uolisanb ay3z pur 3IIS 2]qBTIIBA 2]BD
-11dnp ay3 Surjeurlmi(a ‘3juewalels (@IIId 2yl 23eulmI(ad 03 3urod aie om ‘3IsA1g

11 1009V O0d OL ONIOO ¥V 3M LVHM

*sjyueyq Surjieil
9yl 103 3unodde o3 papraoad st Buipod [wIdads ssajun 1¥H e I33FR opEm 3q

PROGRAM # OF

DESCRIPTION VARIABLE BYTES
Last name NL$ 18
First name NF$ 18
Address AD$ 18
city CT$ 14
State ST$ 2
Zip Code Zp! 4
Status Code ST% 1
(above is ONE BYTE INTEGER)
of orders this year oD% 2
Credit Limit CL# 8
Current balance due CB# 8
Month to date sales . Ms! 4
Year to date sales YS# 8
Salesman number SM% 2
Month to date commissions MC! 4
4

Year to date commissions YC!

Our first task is to construct a FIELD statement describing this data record.
Remembering that all of the FIELDed variables must be strings, and may not be
directly referenced by our application program, we will have to select some
variables which will not be used elsewhere in the program (and make sure we
remember that!). For this example, our FIELD statement might look like:

FIELD 3, 18 AS ZA$, 18 AS ZB$, 18 AS zC$, 14 AS ZD$, 2 AS ZE$, & AS ZF$, 1 AS
ZG$, 2 AS ZHS, 8 AS ZI$, 8 AS ZJ$, 4 AS ZK$, 8 AS ZL$, 2 AS ZM$, 4 AS ZINS, 4
AS 70$

Note that when using the ZA, ZB, etc. naming convention for our 'dummy' vari-
ables, we must be constantly alert not to 'collide' with program variables.
In the above example, had we used one more variable, we might easily have
made the mistake of naming it ZP which, as you can see, is already in use in
the program.

Now let's construct the code required to retrieve a record from the dataset
and convert the FIELDed variables to the program variables (imagine that RN%
has been initialized with the desired record number):

GET 3,RN%
NL$ = ZAS$
NF$ = ZB$
AD$ = ZC$
CT$ = ZD$
ST$ = ZES$
ZP! = CVS(ZF$)
ST% = ASC(ZG$)
OD% = CVI(ZH$)
CL# = CVD(ZI$)
CB# = cvD(zJ$)
MS! = CVS(ZKS$)

SNAPP BASIC
Page 5a - 54
April 28, 1982

4

YS# = CVD(ZL$)
SM%Z = CVI(ZMS$)
MC! = CVS(ZN$)
Yc! = ¢cvs(Zo$)

And if that isn't bad enough, now look at the code required to replace a re-
cord on the dataset, updating the FIELDed variables with the new values as de-
termined by the application program:

LSET ZA$ = NL$
LSET ZB$ = NF$
LSET ZC$ = ADS
LSET ZD$ = CT$

LSET ZE$ = ST$

LSET ZF$ = MKS$(ZP!)
LSET ZG$ = CHR$(STZ%)
LSET ZH$ = MKIS$(OD%)
LSET ZI$ = MKD$ (CL#)
LSET ZJ$ = MKD$ (CB#)
LSET ZK$ = MKS$(MS!)
LSET ZL$ = MKDS$ (YS#)
LSET ZM$ = MKI$(SM%)
LSET ZN$ = MKS$(MC!)
LSET Z0$ = MKS$(YC!)
PUT 3,RN%

At this point, we are reminded that direct file processing is usually the
hardest topic for a new Microsoft BASIC programmer to master. No wonder!

SAMPLE PROGRAM THE NEW WAY:

First, we will construct a string variable describing the logical record and

the variables we wish to associate with that record. If you refer to COMMAND
SYNTAX, you will see that the syntax calls for a 'string expression', which
means also that the descriptor could have been coded directly into the GET
and PUT statements as a string constant, but making it a variable will usual-
ly simplify 1life, as the specification only need be made once. Note that the
list of variables must be terminated with a colon.

Fv$ = "(18)NL$, (18)NF$, (18)ADS, (l4)CT$, (2)sT$, zP!, (1)ST%, OD%, CL#,
CB#, MS!, YS#, SMZ, Mc!, Yc! :"

Now the code to retrieve the record and make all the conversions:

SYSTEM GET FV$,3,RN%

Now the code to replace the record, updating all the data elements 1in the
dataset:

SYSTEM PUT FV$,3,RN%

SNAPP BASIC
Page 5a - 55
April 28, 1982

Hand from the back of the room:
"That seems too easy. What else to we have to do?"
Hmm.. RELAX, and leave the driving to us!

COMMAND SYNTAX:

SYSTEM GET

Retrieve specified record from specified file, updating specified program
variables from the file buffer.

SYNTAX:
SYSTEM GET [*] stexp,nmexpl,nmexp2

The numeric expressions are identical to the standard BASIC GET verb.
'Stexp' is a string expression which, when evaluated, contains a series of
'Variable Identifiers', separated by commas. For numeric variables, the vari-
able identifier simply consists of the variable name. For string variables,
the variable identifier consists of this sequence: left paren, numeric expres-
sion, right paren, and variable name (again explicitly typed). Consistent
with the philosophy of the BASIC interpreter, blanks are ignored throughout
the entire expression. The normal operation of SYSTEM GET is to remove trail-
ing space characters from string variables. The optional asterisk may be
specified to override this action and leave the trailing spaces in place.
Note that the list of variables must be terminated with a colon.

NOTES:

A) The one byte integer format is specified by use of the length specifica-
tion of one preceding an integer typed variable.

B) The parenthesized length expression may be present without an associated
variable, in which case it acts like a COBOL FILLER in skipping the specified
number of bytes in the file buffer.

C) Explicit typing of the variables is not required in the string expression,
although it might be a good idea to include them, as incorrect typing will
produce difficult to troubleshoot errors. ,
D) Array members may be included in the list of variables. If you wish to in-
clude multiple, adjacent array members, you may do so by specifying the low-
est member and the highest member, separated by a semicolon rather than a
comma. As an example, "AZ(1);A%(19P)" specifies that one hundred array mem-
bers are to participate in this I/0 operation. If you use string arrays,
specify the length attribute ONLY on the lowest member. The specified length
will propagate through all the array elements.

E) To optimize the performance of the GET commands, we have chosen to 'leave'
the string variables in the file buffer, rather than impose the overhead of
moving each one to the string pool. For most applications, this will be
transparent. If, however, your application issues consecutive GET commands
with different format descriptors (this includes the situation where the sub-
script value of an array variable changes), and you need to preserve the val-
ues retrieved by preceding GET commands, you must explicitly move the string
variables into the string pool. The easiest way to accomplish this is to
concatenate a null string onto the string in question. E.G. A$ = A$ + ",

SNAPP BASIC
Page 5a - 56
April 28, 1982

AN EXAMPLE:
is presented on the preceding page.

POSSIBLE ERRORS:

Exactly as for the normal GET command, plus
Type mismatch - first argument not a string expression.
Syntax error - required punctuation not found in the expected place.

I1llegal function call - string expression has length of zero or invalid
length specification for a string variable.

SYSTEM PUT
Place specified record in specified file (may be a replacement for an exist-
ing record, or a new record), using specified program variables.

SYNTAX, EXAMPLE, ERRORS:
As for SYSTEM GET except that the optional asterisk, if specified, will have
no effect.

SNAPP BASIC
Page 5a - 57
April 20, 1982

SNAPP SIX - THE COLLEGE EDUCATED GARBAGE COLLECTOR (CEGC)
A Performance Enhancement for the Model I/III BASIC Interpreter

GENERAL INFORMATION:

This product provides a substantial performance improvement to BASIC applica-
tion programs which use strings extensively, by replacing a particularly time
consuming section of code in the BASIC interpreter.

In implementing this BASIC interpreter, Microsoft chose to use a 'variable
length string' approach, which has both advantages and disadvantages. The
primary benefit of this approach 1is the simplicity from the programmer's
standpoint of using strings. The primary drawback is that strings are con-
stantly being relocated in a 'string pool' each time they gain a new value,
and periodically the 'string pool' must be reorganized to condense the var-
ious small free areas into a single contiguous area.

This interpreter was originally conceived to be run on very limited-memory ma-
chines, before RAM and relatively high-speed disk storage became so cost ef-
fective. As a result of the space limitations on the target design machin-

ery, the approach that the developers were forced to take in performing this
string space reclamation function was rather crude and time consuming.

When this reclamation is called for, the system seems to 'lock up', and will
not respond to the operator at all until the process is complete.

As available memory and peripheral storage devices have come to be relatively
inexpensive for microcomputers, system designers have been calling upon these
small machines to perform tasks that were never imagined by the early design-
ers of this interpreter. We have found that the time required to perform
string space reclamation (also known as 'garbage collection') is roughly pro-
portional to the square of the number of active strings in the resident pro-
gram. When dealing, for example, with a 4k RAM system, it would be unusual
to have more than a handful of strings, and the time to collect the garbage
would be only a minor nuisance. When you expand the system to the point
where you may have, for example, 1P¥@# active strings, the garbage collection
time becomes more than two and one half minutes!

We have developed a more modern solution to this problem which takes advan-
tage of the fact that auxiliary memory is available, when needed, as a work
area. Our enhanced garbage collection system requires 4 bytes per active
string as a work area, and when this amount of space is available as 'free
storage', will temporarily borrow that space, and return it to the free stor-—
age pool when completed. We will refer to this as the 'memory mode' of gar-
bage collection. If the required storage is not available, our system will
temporarily transfer out to disk enough of the BASIC interpreter and perhaps
part or all of the resident BASIC program to make room for our work area, and
return the 'paged out' information to its correct location when completed.
We will refer to this as the 'disk mode' of garbage collection.

In almost every conceivable situation, our method produces significantly en-
hanced performance when compared to the Microsoft approach. The ONLY situa-

SNAPP BASIC
Page 5a - 58
April 20, 1982

tion where this is not true is when A) The program uses only a very few
strings, AND B) There is hardly any free memory at all. Under these circum-—
stances, we will simply return control to the Microsoft code. In our own
testing, we have never seen an application which did not benefit from the new

method.

Actual benchmark times for the various methods follow:
These timings were made on a Model III. Model I times will be slightly great-
er. Times are in seconds.

#Strings Microsoft CECG/memory CEGC/disk

125 2.79 .35 1.1¢
259 1.6 .80 1.92
509 49.8 1.9¢ 3.40
1909 159 4.49 7.20
2009 631 1¢6.5¢ 14.29
4000 2513 24.29 29.79

As you can see, in the last example, the enhanced routine is more than one
hundred times as fast as the original approach. While the 1@@:1 ratio is
based upon a 'laboratory' situation which will probably never occur in real
world applications, it remains that many applications will gain significantly
enhanced performance from the use of this intelligent processing function.

OPERATION:

Before using the enhanced collector, you must create a workfile for it to use
in case insufficient memory is available for memory mode collection. The fol-
lowing BASIC program will create the necessary workfile:

1§ OPEN "RN",1,"BASIC/SAV"
2¢ PUT 1,90

3¢ CLOSE

49 END

After BASIC has initialized, but before running your application programs, is-
sue the command SYSTEM "CEGC'. This command may, if desired, be placed with-

in your BASIC program, or entered from the keyboard. See the section
'Command Format' for details and options for this command. The improved col-

lection routine will remain in control until BASIC is exited. If your sys-—
tems make a habit of re-initializing BASIC, you will need to reload the
collector to keep it going. If the reason you are re-initializing BASIC is
to change the number of file buffers, please see our EXTENDED BUILTIN
FUNCTIONS program product and the facilities included therein for changing
the number of file buffers.

COMMAND FORMAT:

?he complete syntax of the command to invoke the enhanced collection routine
1s as follows:

SNAPP BASIC
Page 5a - 59
April 24, 1982

SYSTEM "CEGC" [,nmexpl [,nmexp2]]

Nmexpl, if present, specifies the starting address of a 576 (&H24@) byte
block in which the collection logic is to be loaded. If not specified, the
address will default to BASIC's HIMEM plus one. The module start address
must be > BASIC's HIMEM, and its end address must be <= LDOS HIGH$, or an
Illegal function call error will be generated in response to the request.
Additionally, the memory area must not overlap that currently in use by
Extended Basic Mapping Support. A value of zero for nmexpl is interpreted as
a request to disable the enhanced collection routine. Nmexp2, if present,
specifies the 'trigger level' at which point collection will be invoked, and
will default to a value of 255.

APPLICATION NOTES:

The easiest way to position this block, given the variable nature of LDOS
HIGH$, is to place the following statements at the start of your program:
SYSTEM "CEGC'",p 'Turn off the Garbage Collector, if he was on.
SYSTEM CLEAR ,,f 'Move BASIC's HIMEM up to the limit.
SYSTEM CLEAR ,,&H248# 'Make room for CEGC.
SYSTEM "CEGC" 'Enable CEGC at the current BASIC HIMEM+l.

If you will be using CEGC concurrently with BASIC Mapping Support, follow the
above statements with:

SYSTEM CLEAR ,,&H38f 'Make room for XBMS /MAP file.

SYSTEM "INIT","screen" 'Initialize XBMS screen at the current HIMEM+l.

LIMITATIONS:

As with all good things, there are some limits. For any given set of circum-
stances, there is a certain maximum number of strings which can be processed
by this routine. We do not believe that any real world applications will

come even close, but mention this for your information. The exact value of
this maximum number is calculated by a fairly complex formula, but it will al-

ways be at least 128f, and will never exceed 576@. If the maximum is exceed-
ed, we will simply turn control over to the Microsoft routine.

Because the Microsoft garbage collection logic is burned into a ROM, and can-
not be patched, we are forced to perform collection on an 'anticipatory' ba-
sis. The enhanced collection routine will examine unused string space
following the execution of each BASIC statement, and if the computed value
falls below the 'trigger level', will commence collection immediately. We
have chosen the default of 255 as the 'trigger level' value because ordinary
assignment (LET) statements can never use more than that amount of string
space. It is possible, however, for a single statement to use many times
that amount. This is the reason that we support a user defined value for
this level. If you perceive that your BASIC application is collecting with-
out our assistance, you would be advised to increase the value from the de-
fault of 255. Be aware that UNNECESSARILY increasing this value, however,
will cause collection to occur more frequently.

SNAPP * BASIC
Page 5a - 60
April 2¢, 1982

HINTS & TIPS:

As always, there are techniques which will reduce the frequency of garbage
collection, and these techniques are still valid and wise to use: We have in-
cluded 1in your documentation package an article entitled ". . . But -the
GARBAGE COLLECTOR will ring several times!' which will provide you with sever-
al suggestions in this area.

Using the Microsoft garbage collection routine, the best overall results were
obtained by CLEARING as much string space as possible. Using the new one,
this is not always true. IF, by reducing the CLEARED space, you can leave

enough FREE MEMORY such that there are 4 bytes free for each active string,
the benefit of memory mode garbage collection will accrue.

To assist you in optimizing the CLEAR value for any given BASIC program, we
have included on your distribution disk a program named OPTIMIZE/BAS. Before
you run this program you should execute the BASIC program which is of con-
cern, and BREAK it at a point when activity is at its peak. OPTIMIZE/BAS
will need four pieces of information: 1) The results from a PRINT MEM. 2)
The results from a PRINT FRE(A$). 3) The number of bytes your program
CLEARed. 4) The number of strings in use by your program.

In some applications, there are points where it is especially important not
to permit garbage collection to occur. Previously, the way to avoid this was
to force a garbage collection with a statement such as VV = FRE(A$). Note
that even with CEGC installed, this statement will force a collection with
the Microsoft 1logic. To force a collection via CEGC, use the statement
SYSTEM FRE [VVZ], where VV%Z, if present is any INTEGER variable. You might
find it helpful to do this before any extensive operator input, so that the
operator will not have to suffer a collection while in the middle of typing
in a word.

POSSIBLE USER MODIFICATIONS:

This version of the collection routine will flash an asterisk in the upper
right hand corner of the video display when collection starts, and blank it
out when the procedure ends. If you do not care for this feature, the file
named ASTEROFF/FIX contains a patch to disable it. The file named

ASTERON/FIX contains a patch to re-enable this asterisk display. Both these
/FIX files contain patch installation instructionms.

SNAPP BASIC
Page 5a - 61
April 25, 1982

SNAPP SEVEN - REVERSE COMPRESSION

GENERAL INFORMATION

The purpose of this enhancement to the LBASIC interpreter is to make BASIC

programs as ‘'readable' as possible to facilitate understanding and/or
maintenance.

It is a sad fact that the characteristics of interpretation dictate that the
programs which are most easily read and understood by human beings are the
least efficient from the standpoint of the machine, and vice versa. As a re-
sult, programs tend to become 'compressed' for increased execution efficien-
cy. Several products, including one of ours, are on the market to perform
this compression automatically.

A very tightly compressed program becomes extremely difficult to understand
and modify, even if you wrote the program yourself. If someone else wrote
the program and compressed it, the task becomes nearly insurmountable.

SNAPP-VII addresses this very real problem by offering a facility whereby a
program may be 'cleaned up' such that reading and understanding is facilitat-
ed. Essentially, it does everything you could imagine to improve the read-
ability of a BASIC program EXCEPT put the REMs back in (if someone can figure
out how to do that, please call collect).

SNAPP~-VII will:
Insert spaces into the program code wherever appropriate.
Separate multiple statement lines into separate lines where possible.
When a multiple statement line can not be separated, linefeeds and
tabs will be inserted to improve readability.
Insert missing typing characters corresponding to the defaults in
effect.
Indent statements contained within FOR / NEXT loops.

OPERATION

SNAPP-VII is invoked from the LBASIC Ready prompt by keying the letter 'I',

possibly followed by optional parameters. The operation is performed upon
the memory resident program.

Optional parameters are:

'M', which if present must be the first option, and requests suppression of
the informational messages about the size of the program in lines and bytes
before and after the operation.

'E', which requests the insertion of spaces following left parentheses and be-
fore right parentheses. Some people like spaces here, some hate them. No
one seems to be indifferent on this topic. Try it both ways and pick your
favorite.

'I', which suppresses the indentation of statements contained within FOR /
NEXT 1loops.

'L', which requests indentation of lines which were split apart. This option
will provide a 'stair-step' visual connection of statements which are execut-
ed as a single unit.

SNAPP BASIC
Page 5a - 62
April 20, 1982

‘.}

SOME REAL-WORLD SAMPLES

The following are intended more for illustrative purposes than as_functiénal
programs.

Print sorted mailing list:

A file named “"TEST/DAT" is stored on disk. The file contains names and ad-

dresses. It is desired to print a list of the contents of the file in al-
phabetical order by last name. When the last names are identical, they

should be listed in alphabetical order by first name within last name.

The record is arranged as follows:

Description Size Variable
Last name 18 NL$
First name 18 NF$
Street address 18 SAS
City 18 CT$
State 2 ST$
First five digits of ZIP 4 Z1!
Last four digits of ZIP 2 2%

The code might look like:

169 SYSTEM CLEAR -1,100@@ 'Make sure we have a file buffer

114 OPEN "RO",1,"TEST/DAT",88 'Make sure the file is there

120 DEFINT A-Z 'For convenience

13¢ FD$ = "(18)NL$,(18)NF$,(18)SAS$,(18)CT$,(2)ST$,Z1!,22%" 'Describe the
record

14¢ DIM NL$(LOF(1)),NF$(LOF(1)),RR%¥(LOF(1l)) 'Set up arrays. They could have
been named anything.

15¢ FOR I = 1 TO LOF(1l) 'The bounds of the file

160 SYSTEM GET FD$,1,I 'Go getem

179 NL$(I) = NL$ 'Save in the array

189 NFS$(I) = NF$ 'Ditto

199 RRZ(I) = I 'Remember where this person was in the file
208 NEXT 'I

214 SYSTEM "SORT","+NL$,+NF$,RRZ" 'Sort first name within last name, record
numbers tag along

22¢ SYSTEM "ERASE" NL$,NF$ 'We don't need these anymore. Getting rid of
them will reduce garbage collection

239 'At this point, the array RRZ contains the list of disk record numbers
in the desired alphabetical order.

249 FOR I =1 TO LOF(1)

25¢ SYSTEM GET FD$,1,RR%Z(I) 'Note that we use the array as the index.

260 ZP$ = FN FMT$ ("##### ###4";211,22%;) 'Working on the zip code

279 MID$(ZP$,6,1) = "-" 'post office likes this dash
28¢ FOR J = 1 TO LEN(ZPS)
299 IF MID$(ZP$,J,1) = " " THEN MID&(ZP$,J,1) = "P" 'Post office insists

upon these zeros.
369 NEXT 'J

SNAPP BASIC
Page 5a - 63
April 24, 1982

319 LPRINT USING "% z % z % y4
4 4 4 Z";NF$,NL$,SA$,CT$,STS,ZP$

320 NEXT 'I

339 CLOSE

34@¢ END

Convert mailing list to upper/lower case:

The following is a program I wrote to convert my own customer database,
stored on PROFILE II+, from all capitals to upper/lower case. It doesn't do
the job perfectly, but it accurately fixed about 99%, and is a good example
of the use of Extended File Mapping Support and FN LCS$.

11¢ SYSTEM CLEAR -3,10008 'Acquire files & string space.

13¢ DIM PR$(43)

14¢ OPEN "R",1,"CUSTOMER/KEY" 'This is old-style blocked records.
15¢ OPEN "R",2,"CUSTOMER/DAT",85 'This is blocked file mode.

16¢ OPEN "R",3,"CUSTOMER/DA2",85 'As is this one.

17¢ FKS = "(OF%), (20)NL$, (20)C0$,(2)ST$, (1)PR$ (1) ;PRS (43)"
184 FD$ = "(16)NF$,(20)ADS, (16)CT$, (14)CY$,(5)Z1$,(4)22$,(8)DTS, (2)RTS"
199 F2$ = "(5)FP$,(20)cC$, (5)EDS, (48)RMS, (12)PHS"

209 FOR LIZ = 1 TO LOF(3)
21¢ OF%Z = 85*%(LIZ-(3*(INT((LI%Z-1)/3)))-1) 'calculate offset into record.

229 SYSTEM GET FK$,1,(LIZ+2)/3
239 SYSTEM GET FD$,2,L1Z%

249 SYSTEM GET F2§$,3,LI%

259 A$ = NL$: GOSUB 38¢ : NL$ = A$ 'Convert last name
260 A$ = CO$: GOSUB 38@ : CO$ = A$ 'And company name
279 A$ = NF$: GOSUB 38§ : NF$ = A$ 'And first name

280 A$ = AD$: GOSUB 380 : AD$ = A$ 'And street address
299 A$ = CT$: GOSUB 388 : CI$ = A$ 'And city name

300 A$ = CY$: GOSUB 3809 : CY$ = A$ 'And country name

329 SYSTEM PUT FK$,1,(LI%+2)/3
339 SYSTEM PUT FD$,2,LI%
349 SYSTEM PUT F2$,3,L1I%

350 NEXT

36¢ CLOSE

37¢ END

389 IF LEN(A$) = P THEN RETURN 'Nothing to coavert
399 Cc% = -1 'If C% is true, capitalize next letter.

499 FOR I%Z = 1 TO LEN(A$) 'Step through the string.

419 IF NOT C% THEN 43@ 'This should not be capitalized.

429 IF MIDS (A$,I%,1) >= "A" AND MID$(A$,I%,1) <= "z" THEN C%=p : GOTO 470
'Found a letter to capitalize : now stop capitalizing

4309 MIDS (A$,I%Z,1) = FN LC$(MID$ (A$,I%,1)) 'Bring this one down to L/C.

44§ TIF MIDS(A$,I%,1) = " " OR MID$(A$,I%,1) = "." OR MID$(AS$,I%,1) = "-"
THEN CZ = -1 'End of word. Start capitalizing again.

459 IF IZ > 1 THEN IF MID$(A$,I%-1,2) = "Mc" THEN C% = -1 'Special case

460 IF 1% > 2 THEN IF MIDS (A$,1%-2,3) = "Mac'" THEN C% = -1 'Ditto

479 NEXT

48p RETURN

SNAPP BASIC
Page 5a - 64
April 2¢, 1982

A TUTORIAL ON GARBAGE COLLECTION
.« + . But the Garbage Collector will ring several times!

By Bob Snapp
(c) 1982 1091001 Inc. All rights reserved.

Most of you who have spent any time working with TRS-8§ BASIC have observed
the situation where the system will appear to 'freeze up' for some period of
time, then (amazingly?) come back to life. You may have deduced that it has
something to do with strings, or been told that it was 'reorganizing string
space'. Want to know more about what's happening? Read on . . .

Variable length character strings are a real boon to the high-level language
programmer. As a very simple example, consider printing an employee's name
on a paycheck., If the employee's name, for example, were John Jones, you
would not normally wish it to appear on the check as John Jones, but
to have the last name appear immediately adjacent to the first name.. Using
fixed-length strings, each of the name fields would normally be as long as
the longest practical name, and would be filled out with blanks to this max-
imum length. The programmer in this case would have to tediously count out
the number of trailing blanks in the first name field, and subtract that from
the maximum length of the field to determine how to construct the print line
for an attractive appearance. We should be grateful that Microsoft chose the
variable length approach such that we can LPRINT NF$;" ";NL$.

If you still don't appreciate the value of this approach, ask a COBOL program-
mer what he would have to go through to get that paycheck the way we want it.
He'd probably still be coding this time next week!

Given that the implementors of a language have chosen to use variable length
strings, another question is immediately brought to mind: shall the storage

for the strings be 'statically' or 'dynamically' allocated? Suppose, for ex-
ample, that the application program needed to construct an array of names in
which the longest name is 3@ characters, but the average length is only 12.
If storage were to be statically allocated, an array of 1@#@#@ such names would
immediately gobble up 3@,PP# bytes of memory. This is the way that North
Star BASIC and IBM's VSBASIC handle strings. While memory has become rel-
atively inexpensive these days, our current generation processors cam still
only address 65,536 bytes of memory, so the question normally is not one of

'Can I justify the cost of more memory?', but rather 'What would I do with
more memory if I had it?'

Again, Microsoft has made the wiser choice, by dynamically allocating memory
for strings on an 'as required' basis. In the example above, only 12,000
bytes of memory would be required to implement the string array.

Experience should teach, however, that good things are not free, and this is
no exception. In exchange for a very flexible and memory efficient string
handling system, we pay the price of a rather complex overhead to 'manage’
the strings.

SNAPP BASIC
Page 5a - 65
April 24, 1982

Figure 1 is a 'map' of memory allocation for Microsoft BASIC, so you can get
a feel for where the string space fits into the overall picture. Two of the

areas on the map are completely dynamic: the stack, which moves downward,
and the variable/array tables, which move upward. Stack requirements are nor-

mally minimal, but deeply nested GOSUB's or FOR/NEXT loops can make it quite

large. When the stack is about to bump into the variable/array tables, or
vice versa, the dreaded 'OM' error results.

This article, however, is about strings, so let us direct our attention to
the string space. A 'pool' of storage for strings is set aside immediately
below reserved memory (if any). The size of this area is determined by the

CLEAR nnnn statement, or defaults to either 50 or 10¢ bytes, depending upon
the TRS-8@ model. :

Within the variable table, a string always occupies exactly three bytes of
storage: one byte for the current length of the string (§-255), and two
bytes for the location of the string data. The string data can be in one of

four places: 1) The string was named in a FIELD statement, in which case
the data is in the file buffer area; 2) The string was created by a LET or
READ statement which assigned to it the value of a string literal, in which
case the data is contained within the BASIC program; 3) The string has a
length of zero, in which case there is no string data; or 4) Any other situa-
tion, in which case the string data is located somewhere in the string pool.

Space in the string pool is allocated to active strings starting from the
top. Pointers are maintained by BASIC to 'next available string location'
(initially right below reserved memory), and to 'top of stack'. When a
string is to be stored in the pool, the number of bytes required is subtract-
ed from 'next available', and the result is compared to 'top of stack'. When
the comparison shows that space is available, the string is stored, 'next
available' is updated, and processing continues on ‘its merry way. When the
test fails . . . but that's what we are here to learn about!

Let's examine here a very simple BASIC program and a diagram of what the
string pool will look like in Figure 2.

10 CLEAR 12

26 A$ = STRINGS(3," ")
3¢ B$ = STRING$(3," ™)
49 C$ = A$

5¢ c$ = B$

60 A$ = C$

We will use the letter F to indicate a free position in the pool. Following
the execution of lime 1@, all 12 positions are free. When line 2§ is execut-
ed, the top three positions are allocated to A$. In lines 3¢ and 49, space
is further allocated to B$ and C$. Note carefully the results, however, of
line 5¢. When C$ is assigned a second value, additional space was taken from
the pool for the new value, and the old space occupied by C$ is ABANDONED!

This space is marked with the letter G (for garbage).

SNAPP BASIC
Page 5a - 66
April 2@, 1982

The problem arises during the execution of line 6. The interpreter deter-
mines that three more bytes of string storage are needed for the new value of
A$, but no space is available.

STOP EVERYTHTING!

Alarms go off all over the place! After quickly consulting his ‘'emergency
procedures' book, the interpreter calls the GARBAGE COLLECTOR: "Please rush

right over, I gotta have at least three bytes for A$'". The garbage collector
arrives, and notices a 'hole' in the middle of the pool. He then pushes the

value of C$ upward into the 'hole', leaving a new free area at the bottom of

the pool. Satisfied that the job is done, the garbage collector departs, leav-
ing his bill behind. In this case, however, his invoice is not for money,

but for TIME.

In this simple example, the garbage collector acts quickly, and if you
blinked, you would probably never notice that he had come and gone. In the
'real world', however, when many strings are active, his job can become rath-
er formidable! 1In fact, he normally surveys the task before starting, and if
it looks like a big job, he will think long and hard about doing that much
work (he's naturally a ligtle lazy).

He always comes through, but sometimes his bill is very large. I have tran-
scribed his 'operations guide' into a PL/I-like pseudocode, in Listing 1. A
careful examination will show that the amount of work he has to do grows
EXPONENTIALLY with the number of strings. The main 1loop, "DO UNTIL
HIGH-STRING-LOCATION = @", will be executed once for each string in the
string pool, while the hottest subroutine, "EVALUATE-STRING-LOCATION", will
be executed (for each iteration of the main loop) once for every string.

From a disassembly of the garbage collection routine, I have derived the fol-

lowing formula for calculating the time for the garbage collector to do his
work:

CT = (((149 * SV (use 129 for Mod II)
+ 271 * AC (use 251 for Mod II)
+ 92 * AE
+ 53 * NS
+ 219 * NN (use 199 for Mod II)
+ 21 * 8§
+ 258) *PS)+ (83 *%BC))/ CS

Where: CT is collection time in seconds,
) SV is the number of simple (non-array) variables, including string
variables.
AC is the number of arrays,
AE is the number of string array elements,
] NS is the number of null (zero length) string elements,
NN 1is the 'number of mnon-null string elements, including those located
outside the string pool,
SS is the number of simple (non-array) string elements,

. PS is the number of non-null string elements located in the string
pool,

SNAPP BASIC
Page 5a - 67
April 2@, 1982

BC is the total number of bytes used for string data,
CS is the Z-8fp clock speed, in cycles per second.

unmodified TRS-8@ clock speeds are:
Model 1 - 1774983

Model II - 40@0009
Model III - 2027520

That's a pretty complex formula, and normally many of the factors are not ter-

ribly significant in determining the final result. A good approximation can
usually be found from:

CT = 319 * PS~2 / CS (use 30@ for Model II)

The second formula was derived from experimentation, rather thanm calcula-

tions, and is in fact often more accurate than the first (proving only that
my calculations were not perfect).

The most important thing to observe about the formulae is that the time re-
quired to garbage collect is roughly proportional to the SQUARE of the number
of strings. This means, quite simply, that if you double the number of
strings, you multiply the garbage collection time by 4!

Let's take a real world example: A Model III program with 5P@ active
strings. Using the second formula, we get:

319 * 508~2 / 2927529

or 38.224 seconds! During this time, the machine will seemingly 'lock up',
and will not respond even to the BREAK key. And all this time you suspected
your machine was malfunctioning?

To take the matter to its ridiculous extreme, the program shown below will

produce a garbage collection time (again on a Model III) of 3 hours, 26 min-
utes, 24 seconds, again using the second formula.

19 CLEAR 9180

20 DIM A$(9000)

3¢ FOR IZ = 1 TO 99¢0
49 A$(I%Z) = CHR$(32)
5@ NEXT

6@ PRINT TIMES

70 PRINT FRE(A$)

8¢ PRINT TIMES

Now that we know just how bad that this can get, let's see what we can do to
reduce its impact on us.

Our efforts in reducing the impact of garbage collection can be djvided into
two main groups: A) Reducing the frequency of garbage collection; and B)
Reducing the time required for garbage collection when it occurs.

Reducing the frequency of garbage collection is normally the simpler of the
two areas, and we shall start there.

SNAPP BASIC
Page 5a - 68
April 20, 1982

C

Without changing the code in the program at all, simply increasing the value
used in the CLEAR statement will cause garbage collection to occur less fre-
quently, sometimes very dramatically. Garbage collection will occur in
inverse proportion to the amount of unused string space (i.e. the results of

FRE(")). If your program actually uses 1§@P@# bytes of string space and
CLEARs, for example, 11#@ bytes as a string pool, then garbage collection
will occur at some general rate. Let us call this rate N. If, however, you
were to CLEAR 6@@@ bytes, the unused string space would be 5§ times as large
and garbage collection will occur at the rate N/5@. Your best choice, then,
is to CLEAR the largest possible value.

Hand from the back of the room:
"How do we know what is the largest possible value?"

Good question. You have to determine this by trial and error. Just keep in-
creasing the CLEARed value until you get OM errors, then reduce it until the
OM errors go away. To be on the safe side, you might reduce it by a few hun-
dred bytes more than seems absolutely necessary. By the way, programs tend
to require changes, and you don't want to have to keep re-doing the trial and
error, so I suggest that you use a 'reverse logic CLEAR'. The space required
for variables and stack tends to change very slowly when modifications are
made to the program, so use the following techmique: 1) Determine through
the trial and error process the largest practical amount to CLEAR. Call this
value X. 2) Enter the following command: CLEAR § : PRINT MEM. Call this
value Y. 3) The expression Y - X represents the space needed for variables
and stack. Call this value Z. 4) Replace the CLEAR statement in the pro-
gram with this: CLEAR § : CLEAR MEM - Z, plugging in the number derived
above. This technique has been shown to reduce the need to go back and re-
work the CLEAR requirements.

Now that we know how much string space to CLEAR, let's learn how to treat our
string space very gently., The first thing to understand is that each time a
string variable appears on the left hand side of an assignment statement
(statement which contains an equal sign), the old value of the string vari-
able (if any) 1s abandoned UNLESS the string variable is used with LSET,
RSET, or MID$. The easiest way to benefit from this knowledge is to prevent
the abandonment of a string when its value, but not its length is to change.
I1f, for example, A$ and BS both have a length of 15, the execution of

A$ = BS
will cause the previous space occupied by A$ to be abandoned, contributing to
the fragmentation which causes the calls to the garbage collector. The execu-
tion of

MID$ (A$,1,15) = BS,
however, will NOT contribute to the fragmentationm.

Multiple concatenation is another villain which tends to beat up the string

space. If A$, B$, C$, D$, and E$ all have, for example, a length of 5, and
we wish to construct Z$ with the five other strings 'strung together', the ex-
ecution of

Z$ = AS + BS + C$ + D$ + ES
will really play havoc with the string space. BASIC will actually execute
that statement as if you had entered

T1$ = A$ + BS

SNAPP BASIC
Page 5a - 69
April 24, 1982

T28 = T1$ + C$
T3$ = T2$ + D$
28 = T3$ + ES.

A much less damaging set of code would be
Z$ = STRING$(25,P)
MID$ (2$,1,5) = A$
MID$ (2$,6,5) = BS

MID$(Zz$,11,5) = C$
MID$(Z2$,16,5) = D$
MID$ (2$,21,5) = ES.

And the first statement in this sequence could be omitted if Z$ already had a
length of 25.

A very typical set of code commonly found in an INKEY$ routine might look
like:

199 W = "m

119 1$ INKEY$: IF IS = "' THEN 116

12¢ IF ASC(I$) = 13 THEN RETURN

139 W$ = W$ + I$

149 IF LEN(WS$) =

N THEN RETURN ELSE 11§

A much less damaging set of code would be:
160 WS = STRINGS(N," ™)
119 1$ = INKEY$: IF I$ = "" THEN 119
120 IF ASC(I$) = 13 THEN 150
130 K=K+ 1 : MID$(W$,K,1) = I$
140 IF K = N THEN RETURN
150 FOR J = N TO 1 STEP -1
16@ IF MIDS(W$,J,1) <O " " THEN P =J : J =1
179 NEXT
180 W$ = LEFT$(WS,P) : RETURN.

In the first set of code, a string will be abandoned once per character in-
put. In the second example, strings will be abandoned only twice.

The final example of reducing the frequency of garbage collection deals with
the exchange of the values of two strings. I won't go into great detail on
this, because the need to exchange the values of two strings occurs primarily
in sorting applications, and I feel that sorting should be done with a ma-
chine language routine. Suffice it to say that on the Model II, the SWAP
verb can be used to exchange two values without leaving a trail of garbage be-
hind. On the Model I or III, the following combination of VARPTR, PEEK, and
POKE may be used to simulate the SWAP verb.

FOR I%Z = 0 TO 2
T% = PEEK(VARPTR(A$)+1%)
POKE (VARPTR(AS)+1%),PEEK(VARPTR(BS)+IZ%)
POKE (VARPTR(B$)+1%),T%

NEXT

Now that we have learned some techniques that can reduce the frequency of gar-
bage collection, how can we reduce its duration? Recall that the collection

SNAPP BASIC
Page 5a - 70
April 29, 1982

time is roughly proportional to the square of the number of strings. While
this means that doubling the number of strings will multiply the time by 4,

it also provides a fertile ground for time savings, as a reduction of only
3¢Z in the number of strings will cut the collection time in half!

This, therefore, will be the area to attack. Reducing the number of strings
is the only effective way to reduce the collection time.

A good example of string reduction might be a list of names and addresses.
If a table of 10# were required, you might be tempted to DIM, for example,
separate arrays for last name, first name, address, city, state, and zip
code. Resist the temptation at all costs! Using that technique would create
600 strings, which definitely puts you in the RED ZONE. By merging each of
the data items into a single string (with some sort of home-grown delimiter),
you would cut the 6@@ to 10, which is in the GREEN ZONE. Keep your eyes
open, and any time you see more than one string array with the same dimen-
sion, it 1is probably a prime opportunity to cut down on the number of
strings.

A more subtle example might be found in building an index to some kind of
large data file. Suppose that the data file has 1@@f records, each uniquely
identified by a 1§ character string. If you wanted to be able to gain speedy
access to each record by its identifier string, you might take the following
approach. Pass through the file once, building parallel arrays of the identi-
fier (string) and the record number (integer). Sort the arrays on the identi-
fier, with the record number 'tagging-—along'. When the user requests a
record by identifier, binary search the string array, using the record number
corresponding to the located string as the key for direct retrieval of the
complete data record desired. A sketch of this approach will be found in
Listing 2.

This routine will perform VERY quickly, as the binary search will go in al-
most no time, and only a single disk access is required for the fetch of the
data record. Unfortunately, the routine is operating well into the RED ZONE
for the garbage collector, and collection times in the 150 second range will
be observed on a Mod III.

A slight modification to the technique will eliminate the garbage collection
problem, with some additional overhead in disk accesses. After sorting the
arrays, GET RID of the string array! On the Model II, use the ERASE command.
On the Model I or III, pass through the string array and set all the strings
to nulls. Then use the array of record numbers as a key to do the very same
binary search ON DISK! Binary searching 10@9 records will never take more
than 18 probes. Obviously, the individual searches will be slower, but be-
cause we have escaped the terrific garbage collection problem, they will be
consistent. A sketch of this approach will be found in Listing 3.

SNAPP BASIC
Page 5a - 71
April 20, 1982

You will find that a user will prefer, for example, a 4 second response to a
request (all the time) to a 1 1/2 second response (most of the time) mixed
with a 15§ second response (occasionally). Even in the cases where the TOTAL
time for a group of requests might be less, if the computer operator has to
sit there and wait for a long garbage collection, he/she will become quite im—
patient with your program.

To summarize this final suggestion: In many cases you will be better off to

implement a large table of strings on disk, rather than put up with long col-
lection times.

SNAPP BASIC
pPage 5a - 72
April 29, 1982

LISTING 1

GARBAGE-COLLECTOR: PROCEDURE;
IF PACKED-INDICATOR = TRUE THEN SIGNAL ERROR (OUT-OF-STRING-SPACE);
PACKED-INDICATOR = TRUE; /* caller sets back to false */
NEXT-AVAILABLE-STRING-LOCATION = TOP-OF-STRING-SPACE;
DO UNTIL (HIGH-STRING-LOCATION = §);
HIGH-STRING-LOCATION = §;
POSTION = START-OF-WORKSPACE;
DO WHILE (POSITION < END-OF-WORKSPACE);
CALL EVALUATE-STRING~-LOCATION;
INCREMENT POSITION TO NEXT WORKSPACE ENTRY;
END; /* do while (position < end-of-workspace) */
POSITION = START-OF-VARIABLE-TABLE;
DO WHILE (POSITION < END-OF-VARIABLE-TABIE);
IF VARIABLE-TYPE = STRING THEN CALL EVALUATE~-STRING-LOCATION;
INCREMENT POSITION TO NEXT VARIABLE ENTRY:
END; /* do while (position < end-of-variable-table) */
POSITION = START-OF—~-ARRAY-TABLE;
DO WHILE (POSITION < END-OF-ARRAY-TABIE);
IF ARRAY-TYPE = STRING THEN DO;
CALCULATE SIZE OF ARRAY AND POINT POSITION AT FIRST ELEMENT;
DO WHILE (MORE ELEMENTS IN THIS ARRAY);
CALL EVALUATE-STRING-LOCATION;
INCREMENT POSITION TO NEXT ELEMENT;
END; /* more elements in this array */
END; /* array type = string */
INCREMENT POSTION TO NEXT ARRAY;
END; /* position < end-of-array-table */
CALL PACK~-SELECTED-STRING;
END; /* until high-string-location = § */
RETURN; /* that's all, folks! */

SNAPP BASIC
Page 5a - 73
April 2¢, 1982

EVALUATE-STRING-LOCATION: PROCEDURE;
IF STRING-LENGTH = § THEN RETURN;

/* don't bother with null strings */

IF STRING-DATA-ADDRESS > NEXT-AVAILABLE-STRING-LOCATION THEN RETURN;

/* above test indicates this string already packed */

IF STRING-DATA-ADDRESS < BOTTOM~OF~-STRING-SPACE THEN RETURN;

/* above test indicates this string not in string space */
IF STRING-DATA-ADDRESS < HIGH-STRING~LOCATION THEN RETURN;

/* this means that this is not the highest string data */
HIGH-STRING-LOCATION = STRING-DATA-ADDRESS:
HIGH-STRING-DESCRIPTOR-ADDRESS = CURRENT-STRING-DESCRIPTOR-ADDRESS;
RETURN;

END; /* EVALUATE-STRING-LOCATION */
PACK-SELECTED-STRING: PROCEDURE ;

/* references here relative to high-string-descriptor-address */
MOVE STRING DATA TO (NEXT-AVAILABLE-STRING-LOCATION - STRING-LENGTH + 1);
STRING-DATA-ADDRESS = (NEXT-AVAILABLE-STRING-LOCATION

- STRING-LENGTH + 1);

NEXT-AVAILABLE-STRING-LOCATION =

NEXT~AVAILABLE-STRING-LOCATION - STRING-LENGTH;
RETURN;

END; /* PACK-SELECTED-STRING */
END; /* GARBAGE-COLLECTOR */

SNAPP BASIC
Page 5a - 74
April 2@, 1982

Q

LISTING 2

199 CLEAR 12000

116 OPEN "R",1,"DATAFILE"

12¢ FIELD 1, 18 AS FK$, 9¢ AS DTS
139 DIM RR%Z(LOF(1)), KT$(LOF(1))
149 FOR IZ = 1 TO LOF(l)

15¢ GET 1,1%

169 KT$ (I%) = FK$
179 RR%Z(1%) = IX
199 NEXT

20¢ 'INVOKE A MACHINE LANGUAGE SORT HERE. SORT KT$ and RR%
219 'USING KT$ AS KEY, RR%Z TAGGING ALONG.
22¢ LINE INPUT "NAME";SA$: IF LEN(SA$) <> 1¢ THEN 220
23¢ GOSUB 19@¢@9
24@ IF ERZ THEN PRINT "NOT FOUND" ELSE PRINT DT$
25¢ GOTO 22§
10¢@@ 'BINARY SEARCH OF STRING ARRAY,
RECORD RETRIEVED IF FOUND,
ER% SET IF NOT.

10019 ERZ = @
s ZB% = 1
: ZD% = LOF(1) + 1
: 2C%Z = (ZB% + 2D%) / 2

10920 IF SA$ = KT$(ZC%Z) THEN GET 1,RR%(ZC%)
: RETURN
10930 IF KT$(ZCZ) > SA$ THEN ZD% = ZC%
: ZC% = (2C% + ZB) / 2
: IF 2C% = ZD% THEN ER% = -1
: RETURN
ELSE 19929
19948 ZB% = ZC%
: 2C% = (zC% + ZD%) / 2
: IF ZC% = ZB% THEN ER%Z = -1

: RETURN
ELSE 14029
SNAPP BASIC
Page 5a - 75

April 2@, 1982

LISTING 3

16¢ CLEAR 12¢¢9

119 OPEN "R",1,"DATAFILE"

1290 FIELD 1, 19 AS FK$, 99 AS DTS
139 DIM RRZ(LOF(1)), KT$(LOF(1))
149 FOR IZ = 1 TO LOF(1)

15¢ GET 1,1%

16§ KT$(IZ) = FK$

176 RRZ(IX) = I%

199 NEXT

20@ 'INVOKE A MACHINE LANGUAGE SORT HERE.
219 'USING KT$ AS KEY, RRZ TAGGING ALONG.

211 FOR I% = 1 TO LOF(l)
212 RTS$(1%) = "
213 NEXT

SORT KT$ and RRZ

22¢ LINE INPUT “NAME";SA$: IF LEN(SA$) <> 1§ THEN 220

239 GOSUB 100¢¢

24@9 IF ERZ THEN PRINT "NOT FOUND" ELSE PRINT DT$

250 GOTO 22§

1099¢ 'BINARY SEARCH OF DATAFILE,
RECORD RETRIEVED IF FOUND,

ERZ SET IF NOT.

14910 ERZ = P
: ZBZ = 1
: ZDZ = LOF(1) + 1

: 2C% = (ZB% + ZD%Z) / 2

1915 GET 1,RR%(ZC%)

19929 IF SA$ = FK$ THEN RETURN
16939 IF FK$ > SA$ THEN ZD% = 2C%
: Zc% = (2C% + ZB) / 2

: IF ZC% = ZD% THEN ER% = -1

¢ RETURN

ELSE 1¢¢15

19949 ZB% = ZC%

: 2C% = (2Cc% + zZp%) / 2

: IF ZC% = ZB% THEN ER% = -1

: RETURN

ELSE 10015

SNAPP BASIC
Page 5a - 76
April 29, 1982

7861 ‘@z 11ady

Ll ~ BG ¥8eg
OISV ddVNS

FIGURE 1
Microsoft BASIC memory map

Reserved memory
Allocated by Memory Size?

String Space
Allocated by CLEAR statement

Stack
(moves downward)

Free memory

Array Table
and
Variable Table
(moves upward)

Resident BASIC program

File buffers
Allocated by Number of Files?

BASIC interpreter,
Reserved storage,
Operating system.

Figure 2

After 10| F| F| F} F| F| F| F| F| F] F| F| F
After 20 F| F| Fl F| F] F] F| F| F]AS$|AS$|AS
After30 | F| F| F| F| F| F|B$|B$|BS|AS|AS| AS
Afterd0 | F| F| F|C$|CS|C$|BS|BS|BS|AS|AS|AS
After50 [CS|C$|CS| G| G| G|B$|BS|BS|AS|AS| AS
During60] F| F| F|C$|C$|CS|BS[BS|BS|AS|AS|AS
After60 |A$| AS|AS|CS|CS|Ccs|BS|BS|BS| G} G| G

Copyright 1982 by SNAPP, INC. All Rights Reserved.
SNAPP BASIC is a Trademark of SNAPP, INC,
LDOS is a Trademark of LOGICAL SYSTEMS, INCORPORATED
TRSDOS and TRS-80 are Trademarks of Tandy Corporation
.. . But the Garbage Collector will ring several times!
Copyright 1982 by 1001001 Inc. Reprinted By Permission.

